首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    DiffCSE: 将Equivariant Contrastive Learning应用于句子特征学习

    知乎:李加贝 方向:跨模态检索 来自:深度学习自然语言处理公众号 虽然不同的数据增强(随机裁剪、颜色抖动、旋转等)被发现对预训练视觉模型至关重要,但这种增强在应用于句子嵌入的对比学习时通常不成功。 之前的工作发现,通过简单的基于dropout的增强来构建正对,比基于同义词或掩码语言模型的单词删除或替换等更复杂的增强效果要好得多。虽然对比学习的训练目标鼓励特征对增强变换是不变的,但对输入的直接增强(如删除、替换)经常会改变句子的意义。也就是说,理想的句子嵌入不应该对这种转换保持不变。 以前的工作只是简单地将

    01

    SkeyeRTSPLive高效转码之SkeyeVideoDecoder采用Intel集成显卡高效硬件解码解决方案(附源码) (1)

    在我之前写的一篇文章《SkeyeRTSPLive传统视频监控互联网+实现利器解决方案》中提到RTSP转RTMP的转流过程,简化流程就是通过SkeyeRTSPClient拉RTSP流,获取音视频编码数据,然后再通过SkeyeRTMPPusher推出去,流程非常简单;然后再实际开发过程中,我们发现其实这个过程并没有想象中那么简单;首先,RTSP协议支持多种音视频编码格式,如音频支持AAC,G711,G726,等,视频支持H264,H625,MJPEG, MPEG等等各种格式,而SkeyeRTMP推流只支持H264(已扩展支持H265)格式,这时,音频我们可以通过SkeyeAACEncoder将音频转码成AAC格式,而视频我们可以通过SkeyeVideoDecoder解码成原始数据,然后再通过SkeyeVideoEncoder将原始数据转码成RTMP推送指定的格式,本文,我们将重点讲述SkeyeVideoDecoder基于Intel硬解码库的硬解码流程。

    01
    领券