首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

盘点Pandas中数据删除drop函数的一个细节用法

一、前言 前几天在Python最强王者群有个叫【Chloe】的粉丝问了一个关于Pandas中的drop函数的问题,这里拿出来给大家分享下,一起学习。 二、解决过程 下图是粉丝写的代码。...index是索引的意思,我感觉这块写在一起了,看上去不太好理解,在里边还多了一层筛选。这里给出【月神】佬的解答,一起来看看吧! 直接上图了,如下图所示: 下图是官网关于该函数的解析。...之前我一直用的是columns,确实好像很少看到index,这下清晰了。不过【月神】还是推荐使用反向索引。 三、总结 大家好,我是皮皮。...这篇文章基于粉丝提问,针对Pandas中数据删除的问题,给出了具体说明和演示,顺利地帮助粉丝解决了问题!...最后感谢粉丝【Chloe】提问,感谢【(这是月亮的背面)】和【dcpeng】大佬给出的示例和代码支持。

62720

对比Excel,Python pandas删除数据框架中的列

标签:Python与Excel,pandas 删除列也是Excel中的常用操作之一,可以通过功能区或者快捷菜单中的命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行的一些方法,删除列与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...唯一的区别是,在该方法中,我们需要指定参数axis=1。下面是.drop()方法的一些说明: 要删除单列:传入列名(字符串)。 删除多列:传入要删除的列的名称列表。...图2 del方法 del是Python中的一个关键字,可用于删除对象。我们可以使用它从数据框架中删除列。 注意,当使用del时,对象被删除,因此这意味着原始数据框架也会更新以反映删除情况。...实际上我们没有删除,而是创建了一个新的数据框架,其中只包含用户姓名、城市和性别,有效地“删除”了其他两列。然后,我们将新创建的数据框架赋值给原始数据框架以完成“删除操作”。注意代码中的双方括号。

7.2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    对比Excel,Python pandas删除数据框架中的行

    标签:Python与Excel,pandas 对于Excel来说,删除行是一项常见任务。本文将学习一些从数据框架中删除行的技术。...准备数据框架 我们将使用前面系列中用过的“用户.xlsx”来演示删除行。 图1 注意上面代码中的index_col=0?如果我们将该参数留空,则索引将是基于0的索引。...使用.drop()方法删除行 如果要从数据框架中删除第三行(Harry Porter),pandas提供了一个方便的方法.drop()来删除行。...inplace:告诉pandas是否应该覆盖原始数据框架。 按名称删除行 图2 我们跳过了参数axis,这意味着将其保留为默认值0或行。因此,我们正在删除索引值为“Harry Porter”的行。...这次我们将从数据框架中删除带有“Jean Grey”的行,并将结果赋值到新的数据框架。 图6

    4.6K20

    大数据的删除和去重!

    t015b1202ef98b63353.jpg 大数据操作:删除和去重 一,从海量数据中删除数据 从海量数据表中删除一半数据,看似简单,使用delete命令,如果真这么干,SQL Server产生的事务日志暴增...另外,在删除数据时,把表上的多余索引删除(注意,是删除多余的索引),只保留一个必需的索引;在数据删除完成之后,再重建索引,能够提高数据删除操作的性能。...“表”(也叫做分区)构成的,如果要删除的数据位于同一个分区,或者,一个分区中的数据都需要被删除,那么可以把该分区转移(switch)到一个临时表中,由于分区的转移仅仅是元数据库的变更,因此,不会产生任何的数据...而部分列去重,一般采用row_number排名函数来实现,也可以考虑使用忽略重复值的唯一索引来实现。在实际的项目开发中,部分列去重更为常见。...wKioL1apuCDhIVKPAAA3ho6NWgU543.jpg 通过插入和忽略重复值实现部分列的去重,相对来说,更容易控制,用户可以通过循环插入方式来执行,这样,在单独的一个事务中,控制插入数据的数量

    2.2K10

    pyspark之dataframe操作

    、创建dataframe 3、 选择和切片筛选 4、增加删除列 5、排序 6、处理缺失值 7、分组统计 8、join操作 9、空值判断 10、离群点 11、去重 12、 生成新列 13、行的最大最小值...# 选择一列的几种方式,比较麻烦,不像pandas直接用df['cols']就可以了 # 需要在filter,select等操作符中才能使用 color_df.select('length').show...方法 #如果a中值为空,就用b中的值填补 a[:-2].combine_first(b[2:]) #combine_first函数即对数据打补丁,用df2的数据填充df1中的缺失值 df1.combine_first...# 如果是pandas,重复列会用_x,_y等后缀标识出来,但spark不会 # join会在最后的dataframe中存在重复列 final_data = employees.join(salary...我们得到一个有缺失值的dataframe,接下来将对这个带有缺失值的dataframe进行操作 # 1.删除有缺失值的行 clean_data=final_data.na.drop() clean_data.show

    10.5K10

    时间序列的重采样和pandas的resample方法介绍

    重采样是时间序列分析中处理时序数据的一项基本技术。它是关于将时间序列数据从一个频率转换到另一个频率,它可以更改数据的时间间隔,通过上采样增加粒度,或通过下采样减少粒度。...在本文中,我们将深入研究Pandas中重新采样的关键问题。 为什么重采样很重要? 时间序列数据到达时通常带有可能与所需的分析间隔不匹配的时间戳。...Pandas中的resample()方法 resample可以同时操作Pandas Series和DataFrame对象。它用于执行聚合、转换或时间序列数据的下采样和上采样等操作。...总结 时间序列的重采样是将时间序列数据从一个时间频率(例如每日)转换为另一个时间频率(例如每月或每年),并且通常伴随着对数据进行聚合操作。...重采样是时间序列数据处理中的一个关键操作,通过进行重采样可以更好地理解数据的趋势和模式。 在Python中,可以使用Pandas库的resample()方法来执行时间序列的重采样。 作者:JI

    1.1K30

    Java 从一个 List 中删除重复的元素

    因为 Set 中是不允许重复元素的,那这样就可以完成重复元素的删除了。 使用纯 Java 来删除 List 中的重复元素 我们可以使用 Java 的标准 集合(Collections)来完成操作。...在这个代码中我们使用了 Sets,Sets 是 Guava 使用的一个类,然后用这个类的 newHashSet 来实现包装。...在这个实现中,我们使用 Stream API 的 distinct() 方法,这个方法将会返回一个 stream ,这个 stream 将会 distinct 元素。...另外,针对这种删除方式的处理中的元素是稳定的,意思是在删除重复的时候元素的排序是按照这个元素第一次出现的位置来保持顺序的。...结论 在本文中,我们对 List 中的 重复对象如何删除进行了一些探讨。 通过上面的一些方法能够让你在 Java 进行编程的时候快速删除 List 中的重复元素。

    94910

    Java 从一个 List 中删除重复的元素

    因为 Set 中是不允许重复元素的,那这样就可以完成重复元素的删除了。 使用纯 Java 来删除 List 中的重复元素 我们可以使用 Java 的标准 集合(Collections)来完成操作。...在这个代码中我们使用了 Sets,Sets 是 Guava 使用的一个类,然后用这个类的 newHashSet 来实现包装。...在这个实现中,我们使用 Stream API 的 distinct() 方法,这个方法将会返回一个 stream ,这个 stream 将会 distinct 元素。...另外,针对这种删除方式的处理中的元素是稳定的,意思是在删除重复的时候元素的排序是按照这个元素第一次出现的位置来保持顺序的。...结论 在本文中,我们对 List 中的 重复对象如何删除进行了一些探讨。 通过上面的一些方法能够让你在 Java 进行编程的时候快速删除 List 中的重复元素。

    97020

    如何优雅的从Array中删除一个元素

    与许多JavaScript一样,这并不像它应该的那么简单。 实际上有几种方法可以从一个数组中删除一个或多个元素 - 在这个过程中不会撕掉你的头发 - 所以让我们一个接一个地浏览它们。...使用splice删除一个元素() 这个方法是在卸下,更换,和/或添加数组中的元素的通用方式。它与其他语言中的splice()函数类似。基本上,你采取一个数组并有选择地删除它的一部分(又名“拼接”)。...要从数组中的特定索引中删除一个元素: ["bar", "baz", "foo", "qux"] list.splice(2, 1)// Starting at index position 2, remove...该移位()命令将删除阵列和的第一个元素的unshift()命令将一个元素添加到数组的开始。...of "foo," then remove one element from that position 删除多个特定元素 让我们在数组中添加一个额外的“foo”元素,然后删除所有出现的“foo”:

    9.8K50

    Pandas中的数据分类

    --MORE--> 背景:统计重复值 在一个Series数据中经常会出现重复值,我们需要提取这些不同的值并且分别计算它们的频数: import numpy as np import pandas as...category Categories (4, object): ['地理', '数学', '英语', '语文'] cat\_data3.cat.remove\_unused\_categories() # 删除未使用的分类...中不同的类别都是它的一列,看下面的例子: data4 = pd.Series(["col1","col2","col3","col4"] \* 2, dtype="category") data4 0...Categories (4, object): ['col1', 'col2', 'col3', 'col4'] pd.get\_dummies(data4) # get\_dummies:将一维的分类数据转换成一个包含虚拟变量的...,不改变分类的数量 reorder_categories:类进行排序 set_categories:用指定的一组新类替换原来的类,可以添加或者删除

    8.6K20

    pandas删除某列有空值的行_drop的之

    大家好,又见面了,我是你们的朋友全栈君。 0.摘要 dropna()方法,能够找到DataFrame类型数据的空值(缺失值),将空值所在的行/列删除后,将新的DataFrame作为返回值返回。...‘any’,表示该行/列只要有一个以上的空值,就删除该行/列;‘all’,表示该行/列全部都为空值,就删除该行/列。 thresh:非空元素最低数量。int型,默认为None。...如果该行/列中,非空元素数量小于这个值,就删除该行/列。 subset:子集。列表,元素为行或者列的索引。...2.示例 创建DataFrame数据: import numpy as np import pandas as pd a = np.ones((11,10)) for i in range(len(a...all')) 按列删除:该列非空元素小于5个的,即删除该列 # 按列删除:该列非空元素小于5个的,即删除该列 print(d.dropna(axis='columns', thresh=5)) 设置子集

    11.9K40

    掌握pandas中的transform

    pandas中,transform是一类非常实用的方法,通过它我们可以很方便地将某个或某些函数处理过程(非聚合)作用在传入数据的每一列上,从而返回与输入数据形状一致的运算结果。...本文就将带大家掌握pandas中关于transform的一些常用使用方式。...图1 2 pandas中的transform 在pandas中transform根据作用对象和场景的不同,主要可分为以下几种: 2.1 transform作用于Series 当transform作用于单列...agg中的机制,会生成MultiIndex格式的字段名: ( penguins .loc[:, 'bill_length_mm': 'body_mass_g'] .transform...版本之后为transform引入了新特性,可以配合Cython或Numba来实现更高性能的数据变换操作,详细的可以阅读( https://github.com/pandas-dev/pandas/pull

    1.6K20

    pandas中的.update()方法

    在Pandas中,update()方法用于将一个DataFrame或Series对象中的值更新为另一个DataFrame或Series对象中的对应值。...overwrite:一个布尔值,指定是否要覆盖当前对象中的值。默认为True,表示用other对象中的值完全替换当前对象中的值;如果设置为False,则只会替换NaN值。...需要注意的是,update()方法会就地修改当前对象,而不会返回一个新的对象。这与许多Pandas方法的行为不同,因为它们通常会返回一个新的对象。...update()方法可以方便的将一个DataFrame或Series对象中的值更新为另一个DataFrame或Series对象中的对应值,但是我们却很少用到它。...所以在处理缺失或者过期数据更新时,pandas中的update方法是一个很有用的工具。

    32140
    领券