我们可能会出现这种情况,某个表原来设计不周全,导致表里面的数据数据重复,那么,如何对重复的数据进行删除呢? 重复的数据可能有这样两种情况,第一种时表中只有某些字段一样,第二种是两行记录完全一样。 一、对于部分字段重复数据的删除 先来谈谈如何查询重复的数据吧。 下面语句可以查询出那些数据是重复的: select 字段1,字段2,count(*) from 表名 group by 字段1,字段2 having count(*) > 1 将上面的>号改为=号就可以查询出没有重复的数据了。 想要删除这些重复的数据,可以使用下面语句进行删除 delete from 表名 a where 字段1,字段2 in (select 字段1,字段2,count(*) from 表名 group by 字段1,字段2 having count(*) > 1) 上面的语句非常简单,就是将查询到的数据删除掉。不过这种删除执行的效率非常低,对于大数据量来说,可能会将数据库吊死。所以我建议先将查询到的重复的数据插入到一个临时表中,然后对进行删除,这样,执行删除的时候就不用再进行一次查询了。如下: CREATE TABLE 临时表 AS (select 字段1,字段2,count(*) from 表名 group by 字段1,字段2 having count(*) > 1) 上面这句话就是建立了临时表,并将查询到的数据插入其中。 下面就可以进行这样的删除操作了: delete from 表名 a where 字段1,字段2 in (select 字段1,字段2 from 临时表); 这种先建临时表再进行删除的操作要比直接用一条语句进行删除要高效得多。 这个时候,大家可能会跳出来说,什么?你叫我们执行这种语句,那不是把所有重复的全都删除吗?而我们想保留重复数据中最新的一条记录啊!大家不要急,下面我就讲一下如何进行这种操作。 在oracle中,有个隐藏了自动rowid,里面给每条记录一个唯一的rowid,我们如果想保留最新的一条记录, 我们就可以利用这个字段,保留重复数据中rowid最大的一条记录就可以了。 下面是查询重复数据的一个例子: select a.rowid,a.* from 表名 a where a.rowid != ( select max(b.rowid) from 表名 b where a.字段1 = b.字段1 and a.字段2 = b.字段2 ) 下面我就来讲解一下,上面括号中的语句是查询出重复数据中rowid最大的一条记录。 而外面就是查询出除了rowid最大之外的其他重复的数据了。 由此,我们要删除重复数据,只保留最新的一条数据,就可以这样写了: delete from 表名 a where a.rowid != ( select max(b.rowid) from 表名 b where a.字段1 = b.字段1 and a.字段2 = b.字段2 ) 随便说一下,上面语句的执行效率是很低的,可以考虑建立临时表,讲需要判断重复的字段、rowid插入临时表中,然后删除的时候在进行比较。 create table 临时表 as select a.字段1,a.字段2,MAX(a.ROWID) dataid from 正式表 a GROUP BY a.字段1,a.字段2; delete from 表名 a where a.rowid != ( select b.dataid from 临时表 b where a.字段1 = b.字段1 and a.字段2 = b.字段2 ); commit; 二、对于完全重复记录的删除 对于表中两行记录完全一样的情况,可以用下面语句获取到去掉重复数据后的记录: select distinct * from 表名 可以将查询的记录放到临时表中,然后再将原来的表记录删除,最后将临时表的数据导回原来的表中。如下: CREATE TABLE 临时表 AS (select distinct * from 表名); truncate table 正式表; --注:原先由于笔误写成了drop table 正式表;,现在已经改正过来 insert into 正式表 (select * from 临时表); drop table 临时表;
[Err] 1093 - You can't specify target table 'dept' for update in FROM clause 原因:更新这个表的同时又查询了这个表,查询这个表的同时又去更新了这个表,可以理解为死锁。mysql不支持这种更新查询同一张表的操作。所以我们用生成临时表去操作,上面的语句就是这么写的。复制即可。
Python按照某些列去重,可用drop_duplicates函数轻松处理。本文致力用简洁的语言介绍该函数。
ReplacingMergeTree是另外一个常用的表引擎,ReplacingMergeTree和MergeTree的不同之处在于它会删除排序键值相同的重复项。
加班原因是上线,解决线上数据库存在重复数据的问题,发现了程序的bug,很好解决,有点问题的是,修正线上的重复数据。
sql DISTINCT去掉重复的数据统计方法(2009-01-13 15:05:43)转载 标签:sqldistinct杂谈 分类:sql
最近再解决线上数据库存在重复数据的问题,发现了程序的bug,很好解决,有点问题的是,修正线上的重复数据。
哈喽,我是狗哥。最近都在加班有点忙,一直没时间写文章。加班原因是上线,解决线上数据库存在重复数据的问题,发现了程序的 bug,很好解决,有点问题的是,修正线上的重复数据。
大家注意:因为微信改了推送机制,会有小伙伴刷不到当天的文章,一些比较实用的知识和信息,错过了就是错过了。所以建议大家加个星标
线上库有6个表存在重复数据,其中2个表比较大,一个96万+、一个30万+,因为之前处理过相同的问题,就直接拿来了上次的Python去重脚本,脚本很简单,就是连接数据库,查出来重复数据,循环删除。
平时工作中可能会遇到这种情况,当试图对表中的某一列或几列创建唯一索引时,系统提示ORA-01452 :不能创建唯一索引,发现重复记录。这个时候只能创建普通索引或者删除重复记录后再创建唯一索引。
在网上看过一些解决方法 我在此给出的方法适用于无唯一ID的情形 表:TB_MACVideoAndPicture 字段只有2个:mac,content mac作为ID,正常情况下mac数据是唯一的,由于操作失误导致数据插入多次,导致出现多个mac,content重复数据,现在只保留一条,删除多余的 大体思想是给重复数据一个自增ID,过滤出每组里面最小ID,删除原数据中所有重复数据再将最小ID插入 --查询出所有重复数据,并给定递增id SELECT IDENTITY( INT,1,1 ) AS id ,
今天遇到一个问题。相同的数据在同一张表里出现了多次。我的需求是删除多余的数据,但要保留其中一条。 定义 表明 table_a ,判断唯一的两个字段 c_1,c_2,无关字段data 表中原始数据如下
当表设计不规范或者应用程序的校验不够严谨时,就容易导致业务表产生重复数据。因此,学会高效地删除重复就显得尤为重要。
大家在项目开发过程中,数据库几乎是每一个后端开发者必备的技能,并且经常会遇到对于数据表重复数据的处理,一般需要去除重复保留最新的记录。今天这里给大家分享两种种方案,希望对大家日常开发能够提供一些帮助!
数据库版本 Server version: 5.1.41-community-log MySQL Community Server (GPL)
数据库中表存在重复数据,需要清理重复数据,清理后保留其中一条的情况是比较常见的需求,如何通过1条SQL准确的删除数据呢?
工作中,发现Oracle数据库表中有许多重复的数据,而这个时候老板需要统计表中有多少条数据时(不包含重复数据),只想说一句MMP,库中好几十万数据,肿么办,无奈只能自己在网上找语句,最终成功解救,下面是我一个实验,很好理解。
我们在使用pandas读取文件数据时,可以设定初始的索引。 这里我用之前 爬取过的 拉勾网产品经理岗位数据进行演示如下:
通过程序化的脚本处理,可以实现自动批量处理任务,例如任务的下发、任务的状态查询、任务的完成、业绩和产能交付的统计和结算等。通过集合 触动精灵+API接口 就可以快速实现自己想要的效果。做到自己控制自己的客户端、自己管理自己的数据,既快速又更安全。
以上MergeTree不能对相同主键的数据进行去重,ClickHouse提供了ReplacingMergeTree引擎,可以针对同分区内相同主键的数据进行去重,它能够在合并分区时删除重复的数据。值得注意的是,ReplacingMergeTree只是在一定程度上解决了数据重复问题,由于自动分区合并机制在后台定时执行,所以并不能完全保障数据不重复。ReplacingMergeTree 适用于在后台清除重复的数据以节省空间。
最近在做一个批量数据导入到MySQL数据库的功能,从批量导入就可以知道,这样的数据在插入数据库之前是不会进行重复判断的,因此只有在全部数据导入进去以后在执行一条语句进行删除,保证数据唯一性。
在Kafka中,存在数据过期的机制,称为data expire。如何处理过期数据是根据指定的policy(策略)决定的,而处理过期数据的行为,即为log cleanup。
日常工作中,使用Hive或者Impala查询导出来可能会存在数据重复的现象,但又不想重新执行一遍查询(查询时间稍长,导出文件内容多),因此想到了使用Linux命令将文件的内容重复数据进行去除。
为了解决MergeTree相同主键无法去重的问题,ClickHouse提供了ReplacingMergeTree引擎,用来对主键重复的数据进行去重。
消息重复和幂等问题是很常见的问题,这俩问题基本可以放在一起。 既然是消费消息,那肯定要考虑考虑会不会重复消费?能不能避免重复消费?或者重复消费了也别造成系统异常可以吗?这个是MQ领域的基本问题,其实本质上还是问你使用消息队列如何保证幂等性,这个是你架构里要考虑的一个问题即实际生产上的系统设计问题。
https://www.cnblogs.com/poloyy/category/1683347.html
本次分享一个交通行业实战项目,这个项目是对出租车GPS数据进行分析,具体内容包括了数据理解、业务场景、数据处理、可视化等。
上一篇我们介绍了在有主键的表中删除重复数据,今天就介绍如何删除没有主键的表的重复数据。
SQL如何删除重复数据 在使用数据库时,如何删除重复数据? 如图所示:用户表(user)数据 1、输入查询语句(查询name重复数据) select * from user where name in (select name from user group by name having count(name) > 1) 查询后,可以看到name叫“张三”的有3条数据。 可以使用distinct去重(返回不重复的用户名) select distinct name from user 查询后,
参考资料:https://help.salesforce.com/articleView?id=managing_duplicates_overview.htm Salesforce 很重要的一个平台
大概意思是说已经有一个一模一样的数据块了。另外ck没有事务概念,但是为了保证重复插入的insert的幂等性,会检测重复,如果重复则跳过。 本地测验重复数据会部分保留在数据库,部分被删除。
ETL是数据仓库的后台,主要包含抽取、清洗、规范化、提交四个步骤,传统数据仓库一般分为四层模型。
subset考虑重复发生在哪一列,默认考虑所有列,就是在任何一列上出现重复都算作是重复数据
云爆发技术可为用户提供在应用高峰时期所需的能力,但是这一切都要求用户能够正确地管理好私有云和公共云中的数据。复制等其他策略可帮助用户做到这一点。 在云爆发策略制订中,IT团队会对他们的私有云部署的规模进行规模设计以便能够支持企业的日常平均工作负载,然后可以使用公共云来处理负载高峰。但是,开发一个高效云爆发架构还有着几个不小的障碍——其中最大的问题之一就是广域网。 广域网中高速链接的部署状况要远远落后于局域网。其直接后果是,私有云与公共云之间文件传输的速度通常是比较慢的,这就严重地影响了企业实施云爆发措施中较
本文是【统计师的Python日记】第7天的日记 回顾一下: 第1天学习了Python的基本页面、操作,以及几种主要的容器类型。 第2天学习了python的函数、循环和条件、类。 第3天了解了Numpy这个工具库。 第4、5两天掌握了Pandas这个库的基本用法。 第6天学习了数据的合并堆叠。 原文复习(点击查看): 第1天:谁来给我讲讲Python? 第2天:再接着介绍一下Python呗 【第3天:Numpy你好】 【第4天:欢迎光临Pandas】 【第四天的补充】 【第5天:Pandas,露两手】 【
一个拥有 33.8k star 数的项目,点进去一看,居然没有任何代码,这个 955.WLB 项目究竟拥有什么魔力?
今天需要使用Django查询一列的字段(不含重复),搞了一上午,发现这样的事情:如图:
首先,比如 RabbitMQ、RocketMQ、Kafka,都有可能会出现消息重复消费的问题,正常。因为这问题通常不是 MQ 自己保证的,是由我们开发来保证的。挑一个 Kafka 来举个例子,说说怎么重复消费吧。
在MySQL数据库中,当我们面对一个拥有大量数据的表,并且需要删除重复数据时,我们需要采用高效的方法来处理。今天了我们正好有张表,大概3千万条数据,重复数据有近2千多万条,本文将介绍几种方法,帮助您删除MySQL表中重复的数据中。
你真的会玩SQL吗?系列目录 你真的会玩SQL吗?之逻辑查询处理阶段 你真的会玩SQL吗?和平大使 内连接、外连接 你真的会玩SQL吗?三范式、数据完整性 你真的会玩SQL吗?查询指定节点及其所有父节点的方法 你真的会玩SQL吗?让人晕头转向的三值逻辑 你真的会玩SQL吗?EXISTS和IN之间的区别 你真的会玩SQL吗?无处不在的子查询 你真的会玩SQL吗?Case也疯狂 你真的会玩SQL吗?表表达式,排名函数 你真的会玩SQL吗?简单的 数据修改 你真的会玩SQL吗?你所不知道的 数据聚合 你真的会玩S
小编们最近参加了数据城堡举办的“大学生助学金精准资助预测”比赛,分组第19名的成绩进入了复赛,很激动有木有!在上一篇文章中,小编带你使用pandas并结合官方给出的一卡通消费数据一步步计算得到了每个同学的恩格尔系数,主要介绍了groupby()和pivot_table()两个方法。虽然有些地方写的不成熟,但是仍然收获了很多的肯定和鼓励,这也是小编再接再厉继续完成本系列的动力,谢谢大家!本篇,小编文文将带你探讨pandas在数据去重中的应用。 1 上期回顾 1.1 groupby groupby用于对pand
其实这是很常见的一个问题,这俩问题基本可以连起来问。既然是消费消息,那肯定要考虑会不会重复消费?能不能避免重复消费?或者重复消费了也别造成系统异常可以吗?这个是 MQ 领域的基本问题,其实本质上还是问你使用消息队列如何保证幂等性,这个是你架构里要考虑的一个问题。
V先生有一天工作到很晚,回家的时候要穿过一条长l的笔直的街道,这条街道上有n个路灯。假设这条街起点为0,终点为l,第i个路灯坐标为ai。路灯发光能力以正数d来衡量,其中d表示路灯能够照亮的街道上的点与路灯的最远距离,所有路灯发光能力相同。为了让V先生看清回家的路,路灯必须照亮整条街道,又为了节省电力希望找到最小的d是多少?
摘要:使用 update_one() 而不是 insert_one() 方法存储数据。
前段时间我踩过一个坑:在mysql8的一张innodb引擎的表中,加了唯一索引,但最后发现数据竟然还是重复了。
领取专属 10元无门槛券
手把手带您无忧上云