首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas知识点-逻辑运算

逻辑运算在代码中基本是必不可少的,Pandas的逻辑运算与Python基础语法中的逻辑运算存在一些差异,所以本文介绍Pandas中的逻辑运算符和逻辑运算。...为了使数据简洁一点,删除了数据中的部分列,并设置“日期”为索引。 ? 读取的原始数据如上图,本文使用这些数据来介绍Pandas中的逻辑运算。 二、Pandas中的逻辑运算符 1. 逻辑语句 ?...Python中的逻辑运算关键字(and,or,not)除了可以连接布尔表达式,还可以连接其他的表达式,如字符串等。...而Pandas中,逻辑运算符(&, |, ~)只能用于连接布尔表达式,不能处理其他的表达式。另外,在Python的基础语法中,&, |, ~是位运算符,分别表示按位与运算、按位或运算、按位取反运算。...在查询字符串中,进行条件判断不是用列来判断,而是直接用列索引来判断。当多个条件并列时,因为逻辑运算符的优先级高于比较运算符的优先级,每一个逻辑语句的括号也可以省略。

1.9K40

Pandas 秘籍:1~5

基础”的“将序列方法链接到一起”秘籍 参阅第 1 章,“Pandas 基础”中的“使用运算符”秘籍 构造多个布尔条件 在 Python 中,布尔表达式使用内置的逻辑运算符and,or和not。...这些关键字不适用于 Pandas 中的布尔索引,而是分别用&,|和~代替。 此外,每个表达式必须用括号括起来,否则会产生错误。...如步骤 5 所示,布尔索引还可以与.loc索引器配合使用,同时执行布尔索引和单个列选择。 精简的数据帧易于手动检查 逻辑是否正确实现。 布尔索引与.iloc索引运算符不能完全兼容。...如果将布尔序列传递给它,则会引发异常。 但是,如果您传递布尔 N 维数组,则它将与其他索引器在此秘籍中的行为相同。 更多 如前所述,可以使用一个长布尔表达式代替其他几个短布尔表达式。...query语法的另一个不错的功能是能够在单个表达式中编写双重不等式,并且能够理解冗长的逻辑运算符and,or和not,而不是像布尔值那样的按位等效索引。

37.6K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    在Pandas中实现Excel的SUMIF和COUNTIF函数功能

    pandas中的SUMIF 使用布尔索引 要查找Manhattan区的电话总数。布尔索引是pandas中非常常见的技术。本质上,它对数据框架应用筛选,只选择符合条件的记录。...在df[]中,这个表达式df['Borough']=='MANHATTAN'返回一个完整的True值或False值列表(2440个条目),因此命名为“布尔索引”。...图3:Python pandas布尔索引 使用已筛选的数据框架,可以选择num_calls列并计算总和sum()。...注:位置类型列中的数据是为演示目的随机生成的。 使用布尔索引 看看有多少投诉是针对Manhattan区和位置类型“Store/Commercial”。...目前我们已经熟悉了布尔索引,下面的内容应该很简单。本质上是使用按位与运算符&将两个条件结合起来。注意,这两个条件周围的括号是必不可少的。

    9.2K30

    6-比较掩码布尔

    比较 布尔逻辑 本节介绍了使用布尔掩码来检查和操作NumPy数组中的值。...在NumPy中,布尔掩码通常是完成这些类型任务的最有效方法。 计算下雨天的例子 在这里,我们将使用Pandas加载2014年西雅图市的每日降雨量统计信息(每天的降水量) #!...这是通过Python的按位逻辑运算符&,|,^和〜完成的。与标准算术运算符一样,NumPy将这些重载为ufunc,它们在(通常为Boolean)数组中逐个元素地工作。...: #根据test的索引对应x数组选择True的值 In [71]: x[test] Out[71]: array([1, 0, 0]) 应用到上面统计下雨天的例子中 # construct a mask...易混淆 当使用&和|在整数上,表达式对元素的位进行运算。当使用and或or时,等效于要求Python将对象视为单个布尔实体。在Python中,所有非零整数都将评估为True。

    1.4K00

    Pandas 2.2 中文官方教程和指南(二十三)

    "N"].to_numpy()) 620 us +- 2.65 us per loop (mean +- std. dev. of 7 runs, 1,000 loops each) 然而,访问数组中无效位置的循环索引器...默认的'pandas'解析器允许更直观地表达类似查询的操作(比较、连接和离散)。特别是,&和|运算符的优先级被设置为与相应布尔操作and和or的优先级相等。 例如,上面的连接可以不使用括号写出。...i访问数组中的无效位置会导致段错误,因为内存访问没有检查。...默认的'pandas'解析器允许更直观的语法来表达类似查询的操作(比较、连接和或)。特别是,&和|运算符的优先级被设置为与相应的布尔操作and和or相等。 例如,上述连接可以不使用括号来编写。...默认的'pandas'解析器允许更直观地表达类似查询的操作(比较、连接和分离)。特别是,&和|运算符的优先级被设置为与相应的布尔运算and和or相同。 例如,上面的连接词可以不用括号写。

    35500

    python数据分析——数据的选择和运算

    主要有以下四种方式: 索引方式 使用场景 基础索引 获取单个元素 切片 获取子数组 布尔索引 根据比较操作,获取数组元素 数组索引 传递索引数组,更加快速,灵活的获取子数据集 数组的索引主要用来获得数组中的数据...关键技术: 二维数组索引语法总结如下: [对行进行切片,对列的切片] 对行的切片:可以有start:stop:step 对列的切片:可以有start:stop:step import pandas...关键技术:多维数组中对行的选择,使用[ ]运算符只对行号选择即可,具体程序代码如下所示: 花式索引与布尔值索引 ①布尔索引 我们可以通过一个布尔数组来索引目标数组,以此找出与布尔数组中值为True...关键技术:布尔数组中,下标为0,3,4的位置是True,因此将会取出目标数组中第0,3,4行。具体程序代码如下所示: ②花式索引 【例】找出数组arr中大于15的元素。...数据获取 ①列索引取值 使用单个值或序列,可以从DataFrame中索引出一个或多个列。

    19310

    数据分析利器--Pandas

    Datarame有行和列的索引;它可以被看作是一个Series的字典(每个Series共享一个索引)。...文件路径 sep或者delimiter 字段分隔符 header 列名的行数,默认是0(第一行) index_col 列号或名称用作结果中的行索引 names 结果的列名称列表 skiprows 从起始位置跳过的行数...默认为False keep_date_col 如果将列连接到解析日期,保留连接的列。默认为False。 converters 列的转换器 dayfirst 当解析可以造成歧义的日期时,以内部形式存储。...千数量的分隔符 3.5处理无效值 这里需要掌握三个函数: pandas.isna(): 判断哪些值是无效的 pandas.DataFrame.dropna(): 抛弃无效值 pandas.DataFrame.fillna...(): 将无效值替换成为有效值 具体用法参照:处理无效值 4、Pandas常用函数 函数 用法 DataFrame.duplicated() DataFrame的duplicated方法返回一个布尔型

    3.7K30

    Pandas 学习手册中文第二版:1~5

    这些列是数据帧中包含的新Series对象,具有从原始Series对象复制的值。 可以使用带有列名或列名列表的数组索引器[]访问DataFrame对象中的列。...以下显示Missoula列中大于82度的值: 然后可以将表达式的结果应用于数据帧(和序列)的[]运算符,这仅导致返回求值为True的表达式的行: 该技术在 pandas 术语中称为布尔选择,它将构成基于特定列中的值选择行的基础...布尔选择将逻辑表达式应用于Series的值,并在每个值上返回新的布尔值序列,这些布尔值表示该表达式的结果。 然后,该结果可用于仅提取结果为True的值。...然后,我们检查了如何按索引查找数据,以及如何根据数据(布尔表达式)执行查询。 然后,我们结束了对如何使用重新索引来更改索引和对齐数据的研究。...使用布尔选择来选择行 可以使用布尔选择来选择行。 当应用于数据帧时,布尔选择可以利用多列中的数据。

    8.3K10

    Pandas 数据筛选:条件过滤

    引言Pandas 是 Python 中最常用的数据分析库之一,它提供了强大的数据结构和数据分析工具。在实际工作中,我们经常需要根据特定条件对数据进行筛选。...本文将从基础到高级,逐步介绍如何使用 Pandas 进行条件过滤,并讨论常见的问题和报错及其解决方案。基础概念在 Pandas 中,数据通常存储在 DataFrame 对象中。...DataFrame 可以看作是一个表格,其中每一列都有一个名称,每一行都有一个索引。条件过滤的基本思路是创建一个布尔掩码,然后使用这个掩码来筛选数据。...条件表达式错误问题描述:在编写条件表达式时,忘记使用括号导致逻辑运算符优先级错误。解决方案:确保每个条件都用括号括起来。...使用 and 和 or 而不是 & 和 |问题描述:在 Pandas 中,and 和 or 不能用于布尔数组,而应该使用 & 和 |。解决方案:使用 & 和 | 进行逻辑运算。

    24420

    精通 Pandas:1~5

    第二个 4 显示了在第 4 列开始处的截止,以产生数组[[44, 45], [54, 55]]。 表达式a[:,2]给出了列 2 中的所有行。...除了标准索引运算符[]和属性运算符外,pandas 中还提供了一些运算符,以使索引工作更轻松,更方便。...布尔索引 我们使用布尔索引来过滤或选择部分数据。 运算符如下: 运算符 符号 或 | 与 & 非 ~ 这些运算符一起使用时,必须使用括号进行分组。...isin和所有方法 与前几节中使用的标准运算符相比,这些方法使用户可以通过布尔索引实现更多功能。 isin方法获取值列表,并在序列或数据帧中与列表中的值匹配的位置返回带有True的布尔数组。...我们可以将基于标签或整数的索引与关联的运算符一起使用。 我们可以使用多重索引,它是包含多个字段的复合键的 Pandas 版本。 我们可以使用布尔/逻辑索引。

    19.2K10

    Panda处理文本和时序数据?首选向量化

    Pandas中的向量化,就像6个Pandas一样 说起Pandas中的属性接口,首先要从数据类型谈起。...数值型操作是所有数据处理的主体,支持程度自不必说,布尔型数据在Pandas中其实也有较好的体现,即通过&、|、~三种位运算符也相当于是实现了向量化的并行操作,那么对于字符串和时间格式呢?...01 字符串接口——str 在Pandas中,当一列数据类型均为字符串类型时,则可对该列执行属性接口操作,即通过调用.str属性可调用一系列的字符串方法函数,其中这里的字符串方法不仅涵盖了Python中内置的字符串通用方法...以上,举了几个简单的例子对pandas中的字符串属性接口str进行了牛刀小试,其中包括python内置的字符串函数split、count、len等,也包括findallreplace中嵌套正则表达式等用法...,而布尔型也可通过位运算符&、|、~实现并行计算),通过调用属性接口后的系列方法,可以实现丰富的API以及高效的计算能力。

    97020

    Pandas 2.2 中文官方教程和指南(一)

    此外,不能使用or/and,而是需要使用or运算符|和and运算符&。 到用户指南 请查看用户指南中关于布尔索引或 isin 函数的专门部分。 我想处理已知年龄的乘客数据。...当使用列名、行标签或条件表达式时,请在选择括号[]前面使用loc运算符。对于逗号前后的部分,可以使用单个标签、标签列表、标签切片、条件表达式或冒号。使用冒号指定你想选择所有行或列。...当特别关注表中位置的某些行和/或列时,请在选择括号[]前使用iloc运算符。 使用loc或iloc选择特定行和/或列时,可以为所选数据分配新值。...此外,不能使用 or/and,而是需要使用 or 运算符 | 和 and 运算符 &。 转到用户指南 请查看用户指南中关于布尔索引或 isin 函数的专门部分。 我想处理已知年龄的乘客数据。...当使用列名称、行标签或条件表达式时,请在选择括号[]前使用loc运算符。对于逗号前后的部分,您可以使用单个标签、标签列表、标签切片、条件表达式或冒号。使用冒号指定您要选择所有行或列。

    97210

    【数据分析从入门到“入坑“系列】利用Python学习数据分析-Numpy中的索引

    轴0作为行,轴1作为列。 ? 在多维数组中,如果省略了后面的索引,则返回对象会是一个维度低一点的ndarray(它含有高一级维度上的所有数据)。...,使用&(和)、|(或)之类的布尔算术运算符即可: In [110]: mask = (names == 'Bob') | (names == 'Will') ​ In [111]: mask Out[...注意:Python关键字and和or在布尔型数组中无效。要使用&与|。 通过布尔型数组设置值是一种经常用到的手段。..., 0. ]]) 通过一维布尔数组设置整行或列的值也很简单: In [115]: data[names !..., 0. ]]) 后面会看到,这类二维数据的操作也可以用pandas方便的来做。 花式索引 花式索引(Fancy indexing)是一个NumPy术语,它指的是利用整数数组进行索引。

    1.6K20

    Panda处理文本和时序数据?首选向量化

    Pandas中的向量化,就像6个Pandas一样 说起Pandas中的属性接口,首先要从数据类型谈起。...数值型操作是所有数据处理的主体,支持程度自不必说,布尔型数据在Pandas中其实也有较好的体现,即通过&、|、~三种位运算符也相当于是实现了向量化的并行操作,那么对于字符串和时间格式呢?...01 字符串接口——str 在Pandas中,当一列数据类型均为字符串类型时,则可对该列执行属性接口操作,即通过调用.str属性可调用一系列的字符串方法函数,其中这里的字符串方法不仅涵盖了Python中内置的字符串通用方法...以上,举了几个简单的例子对pandas中的字符串属性接口str进行了牛刀小试,其中包括python内置的字符串函数split、count、len等,也包括findallreplace中嵌套正则表达式等用法...,而布尔型也可通过位运算符&、|、~实现并行计算),通过调用属性接口后的系列方法,可以实现丰富的API以及高效的计算能力。

    1.3K10

    Python可视化数据分析05、Pandas数据分析

    Series Series是一种类似于一维数组的对象,它由一组数据以及一组与之相关的数据标签(索引)组成,创建Series对象的语法如下: #导入Pandas模块中的Series类 from Pandas...=["a", "b", "c"]) print(frame2) 操作DataFrame对象中列 在DataFrame对象中使用columns属性获取所有的列,并显示所有列的名称 DataFrame对象的每竖列都是一个...对象中values属性 values属性会以二维Ndarray的形式返回DataFrame中的数据 如果DataFrame各列的数据类型不同,则值数组的数据类型就会选用能兼容所有列的数据 from pandas...Index diff 计算差集,并得到一个Index对象 intersection 计算交集 union 计算并集 isin 计算一个指示各值是否都包含在参数集合中的布尔型数组 delete 删除索引指定位置的元素...Pandas提供了专门的处理缺失数据的函数: 函数 说明 dropna 根据各标签的值中是否存在缺失数据对轴标签进行过滤 fillna 用指定值或插值函数填充缺失数据 isnull 返回一个含有布尔值的对象

    2.5K20

    数据科学 IPython 笔记本 9.8 比较,掩码和布尔逻辑

    在 NumPy 中,布尔掩码通常是完成这些类型任务的最有效方法。 示例:统计雨天 想象一下,你有一系列数据表示某一城市一年中每天的降水量。...例如,在这里我们将使用 Pandas 加载 2014 年西雅图市的每日降雨量统计数据(在第三章中有更详细的介绍): import numpy as np import pandas as pd # 使用...挖掘数据 一种方法是手动回答这些问题:遍历数据,每当我们看到某个所需范围内的值时,递增计数器。由于本章讨论的原因,从编写代码的时间和计算结果的时间的角度来看,这种方法效率非常低。...NumPy 还将比较运算符,例如(大于),实现为逐元素的ufunc。这些比较运算符的结果始终是布尔数据类型的数组。...在上一节中,我们研究了直接在布尔数组上计算的聚合。

    1K10
    领券