首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

列出pyodbc预准备语句中的参数

pyodbc 是一个 Python 库,用于连接 ODBC 兼容数据库并执行 SQL 查询。预处理语句(Prepared Statements)是一种优化技术,允许您在执行之前预先编译 SQL 语句。这有助于防止 SQL 注入攻击,并提高查询性能。

pyodbc 中,您可以使用问号 ? 作为参数占位符。以下是如何列出预处理语句中的参数的示例:

首先,确保已安装 pyodbc

代码语言:javascript
复制
pip install pyodbc

然后,创建一个简单的 Python 脚本来连接到数据库并执行预处理语句:

代码语言:javascript
复制
import pyodbc

# 连接到数据库
cnxn = pyodbc.connect('DRIVER={ODBC Driver 17 for SQL Server};SERVER=localhost;DATABASE=mydb;UID=myuser;PWD=mypassword')
cursor = cnxn.cursor()

# 定义预处理语句
sql = "INSERT INTO users (name, age) VALUES (?, ?)"

# 列出预处理语句中的参数
params = ['John Doe', 30]

# 执行预处理语句
cursor.execute(sql, params)

# 提交更改
cnxn.commit()

# 关闭连接
cursor.close()
cn’t forget to close the connection
cnxn.close()

在这个例子中,预处理语句 sql 包含两个参数占位符 ?。我们将这些参数存储在列表 params 中,并在执行预处理语句时将其传递给 cursor.execute() 方法。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 【Python】已完美解决:(156, b“Incorrect syntax near the keyword ‘group’.DB-Lib error message 20018, severity

    SQL 语句中其他部分语法错误:可能是在 GROUP BY 子句之前或之后其他部分存在语法错误,但错误提示指向了 GROUP 关键字附近。...三、错误代码示例 以下是一个可能导致上述错误 SQL 查询示例: # 假设使用了 pymssql 或 pyodbc 等库连接 SQL Server import pymssql # 连接到...四、正确代码示例(结合实战场景) 下面是修改后正确 SQL 查询示例: import pymssql # 连接到 SQL Server 数据库(省略了连接参数) conn = pymssql.connect...使用别名:当在 SELECT 语句中选择聚合函数结果时,最好为它们指定别名,以便在结果集中引用。...使用参数化查询:为了避免 SQL 注入攻击,应该使用参数化查询来传递变量值,而不是将它们直接拼接到 SQL 语句中

    18310

    【金猿技术展】多语言训练框架——mRASP

    打破了语种限制 任何语言翻译,无论是孟加拉到古吉拉特还是印地到菲利宾语,基于mRASP 模型微调,新拓展语种效果可期。即使是不包含在训练阶段平行句对中向上微调,也能取得很大提升。...这四种未见对情况下训练机器翻译都很难。当然其中难度最大是最后一种,相当于要求只学习了中文和英语的人,读少量拉丁和印地句子就可以从拉丁到印地翻译。 ? 2....训练阶段,不同于传统训练模型大量堆叠无监督单数据方式,mRASP 另辟蹊径,采用了多语言平行数据作为训练主要目标,将几十种语言平行数据放到同一个模型进行联合训练。...●RAS:随机替换对齐 一句中句子"我 爱 北京 天安门"中"爱"有一定概率被替换成"aime"(法语),"北京"也有一定概率被替换成"Pékin"(法语),于是原句就可能会变成"我 aime Pékin...而在微调阶段,只需要使用训练阶段参数作初始化,之后采用和传统单向机器翻译相同训练方法即可。因此使用mRASP并不需要掌握任何额外技能。

    69410

    机器翻译界BERT:可快速得到任意机器翻译模型mRASP

    这种模型结构不一致会导致翻译模型只有一部分参数被初始化,有效发挥训练作用会比较困难,因此需要很多特殊技巧才能得到提升[6]。...一句中句子"我 爱 北京 天安门"中"爱"有一定概率被替换成"aime"(法语),"北京"也有一定概率被替换成"Pékin"(法语),于是原句就可能会变成"我 aime Pékin 天安门"。...而在微调阶段,只需要使用训练阶段参数作初始化,之后采用和传统单向机器翻译相同训练方法即可。因此使用mRASP并不需要掌握任何额外技能。...即使对于训练数据中从来没有见过语种荷兰到葡萄牙,也取得了 10+BLEU 显著收益。 这里摘录了有代表性部分实验结果: 3.1....微调训练 新建微调阶段配置文件 作者使用是yaml格式配置文件,微调阶段配置参数如下面的例子,各参数具体说明可以在作者说明中找到。

    1.6K30

    直击AAAI 2020,一文读完微软亚研6篇精选论文

    其中,MTFC 任务定义为,给定一句中文口语,翻译结果应该为正规英文书面。...为了验证模型在这个任务表现,MTFC 验证集和测试集分别包含2865和1412个中文口语到英文书面句对(每一句中文口语提供4句英文书面作为参照)。...XNLG 是一个序列到序列 Transformer 模型,它训练包括两个阶段:编码训练、解码训练,以及两个维度:单训练、跨语言训练,共计4个训练任务,如图4所示: ?...整个模型框架如图8所示,FaSE 借助多任务学习方式使得编码器编码特征不仅用于句子切分改写任务,同时还用于判断从当前复杂句中是否可以推断出给定事实。...引入事实判定辅助任务使得模型能够从复杂长句中更好地捕获事实信息,从而提高句子切分准确率;PIT 策略被广泛用于解决多谈话者场景下语音分离任务中标签排序问题。

    1.3K20

    29 篇选 6,微软亚研院AAAI 2020论文精选,必看!

    其中,MTFC 任务定义为,给定一句中文口语,翻译结果应该为正规英文书面。...为了验证模型在这个任务表现,MTFC 验证集和测试集分别包含2865和1412个中文口语到英文书面句对(每一句中文口语提供4句英文书面作为参照)。...XNLG 是一个序列到序列 Transformer 模型,它训练包括两个阶段:编码训练、解码训练,以及两个维度:单训练、跨语言训练,共计4个训练任务,如图4所示: ?...整个模型框架如图8所示,FaSE 借助多任务学习方式使得编码器编码特征不仅用于句子切分改写任务,同时还用于判断从当前复杂句中是否可以推断出给定事实。...引入事实判定辅助任务使得模型能够从复杂长句中更好地捕获事实信息,从而提高句子切分准确率;PIT 策略被广泛用于解决多谈话者场景下语音分离任务中标签排序问题。

    62810

    AAAI 2020 | 微软亚洲研究院6篇精选论文在家看

    其中,MTFC 任务定义为,给定一句中文口语,翻译结果应该为正规英文书面。...为了验证模型在这个任务表现,MTFC 验证集和测试集分别包含2865和1412个中文口语到英文书面句对(每一句中文口语提供4句英文书面作为参照)。...XNLG 是一个序列到序列 Transformer 模型,它训练包括两个阶段:编码训练、解码训练,以及两个维度:单训练、跨语言训练,共计4个训练任务,如图4所示: ?...整个模型框架如图8所示,FaSE 借助多任务学习方式使得编码器编码特征不仅用于句子切分改写任务,同时还用于判断从当前复杂句中是否可以推断出给定事实。...引入事实判定辅助任务使得模型能够从复杂长句中更好地捕获事实信息,从而提高句子切分准确率;PIT 策略被广泛用于解决多谈话者场景下语音分离任务中标签排序问题。

    71620

    【AAAI 2020】微软亚洲研究院6篇精选论文在家必看!

    其中,MTFC 任务定义为,给定一句中文口语,翻译结果应该为正规英文书面。...为了验证模型在这个任务表现,MTFC 验证集和测试集分别包含2865和1412个中文口语到英文书面句对(每一句中文口语提供4句英文书面作为参照)。...XNLG 是一个序列到序列 Transformer 模型,它训练包括两个阶段:编码训练、解码训练,以及两个维度:单训练、跨语言训练,共计4个训练任务,如图4所示: ?...整个模型框架如图8所示,FaSE 借助多任务学习方式使得编码器编码特征不仅用于句子切分改写任务,同时还用于判断从当前复杂句中是否可以推断出给定事实。...引入事实判定辅助任务使得模型能够从复杂长句中更好地捕获事实信息,从而提高句子切分准确率;PIT 策略被广泛用于解决多谈话者场景下语音分离任务中标签排序问题。

    66810

    谷歌搜索用上BERT,10%搜索结果将改善

    最近,谷歌宣布,他们搜索引擎用上了强大 BERT 训练模型,可以让搜索引擎结合语境理解用户搜索意图,甚至能理解一些不起眼介词在搜索语句中重要含义。...为了解决这些问题,谷歌研究人员决定在搜索引擎中引入更加强大自然语言处理模型——BERT。 BERT 对于搜索引擎有何作用? 去年,谷歌开源了用于自然语言处理训练模型——BERT 。...用上 BERT 之后,对于比较长、会话性比较强查询,或者在「for」、「to」等介词比较重要句中,谷歌搜索引擎将能够理解查询语句中上下文。用户可以用更加自然方式进行搜索。...用上 BERT 之前,谷歌搜索引擎用是匹配关键词方法,用搜索结果中「stand-alone」匹配查询语句中「stand」。但根据语境,「stand」在搜索语句中含义并非如此。...他们还用 BERT 改进了 20 多个国家精选摘要,在韩语、印地、葡萄牙中取得了显著进展。

    1.6K20

    Unsupervised NMT、PBSMT、coarse-to-fine...你都掌握了吗?一文总结机器翻译必备经典模型(二)

    统计机器翻译(SMT)首要任务是为语言产生构造某种合理统计模型,并在此统计模型基础上,定义要估计模型参数,并设计参数估计算法。...训练方法利用得出伪句子来实现更好参数启动;多任务(Multitask)方法通过两个翻译任务同时训练神经模型θ;双通道Two-pass 方法将整个翻译过程分为两个步骤,即翻译步骤和消歧义步骤。...使用transformer作为基本序列模型,在WMT单语料库上进行训练,然后在三种不同语言生成任务上进行微调,包括NMT、文本总结和对话回应生成。...TLM目标函数是对MLM扩展,不考虑单语文本流,而是将平行句子连接起来,如图5所示。在源句和目标句中随机屏蔽单词。...使用transformer作为基本序列模型,在WMT单语料库上进行训练,然后在三种不同语言生成任务上进行微调,包括NMT、文本总结和对话回应生成。

    50730

    从零搭建微信公众号数据分析体系:AI辅助编程

    》是一个以本微信公众号数据(毕竟其他更真实业务数据我不敢拿出来写帖子)为例子技术帖子系列。...是一个“边写边做”“有趣”系列。基本按照企业做需求模式,从项目立项、需求调研、数据建模落库、可视化看板搭建、模型调优,一路到看板美化。...随手把AI给到代码放出来供大家参考: import requests import pyodbc # 微信公众号API URL和参数 url = "https://api.weixin.qq.com/...发送请求并获取数据 response = requests.get(url, params=params) data = response.json() # 连接到SQL Server conn = pyodbc.connect...这里唯一费劲一点就是要获取这些ID和code信息了。 下期预告 本周AI实现方案就到这里了,相比之前几种方案,这种方案并没有什么难度。

    33620

    书生·浦大模型全链路开源体系介绍

    国内本土已经发布近80款参数量在十亿量级以上大模型,主要有华为、阿里、百度、腾讯等,亦有清华大学等高校机构。...专用大模型: 针对特定任务,一个模型解决一个问题,比如适用于围棋比赛围棋大模型 通用大模型: 一个模型应对多种任务、多种模态 大模型介绍 书生·浦大模型开源历程: 书生·浦大模型系列...: 以20B开源大模型为例,其性能全面领先相近量级开源模型(包括Llama-33B、Llama2-13B以及国内主流7B、13B开源模型),以不足三分之一参数量,达到Llama2-70B水平...大模型开源开放体系 数据: 开放了书生万卷,具有2TB数据,涵盖多种模态与任务 训练: 开源了InternLM-Train框架,支持并行训练,进行了极致优化,速度达到3600 tokens/sec...,包括模型轻量化、推理和服务 智能体应用 轻量级智能体框架Lagent 多模态智能体工具箱 AgentLego 总结 总之书生浦是一个大模型全链路开源体系,为开发者提供了从数据集准备到模型训练

    41110

    【源头活水】mBART:多语言翻译训练模型

    对于低资源和高资源,查看图5,准备了10^4对到10^7对微调数据,对于模型性能影响。 7. 类似的模型有M2M100 和MBart-50, 都是由facebook开源。...所有实验都是用Fairseq(Ott等人,2019)完成。 可复制性: 所提出方法一个潜在问题是可复制性问题,因为需要大量语料和计算资源,在训练时对超参数进行精细训练选择。...结果:如表5所示,我们发现英语-罗马尼亚训练有很大收益,即使在翻译一门关系遥远未见语言(阿拉伯)和两门未见语言(德语和荷兰)时也是如此。...我们从最好迁移模型开始,并在训练中使用相同单语料上应用(迭代)BT。表9列出了BT迭代1次结果。我们看到所有的对子都有改进。两种方法完整分析留待以后工作。 ?...表9:X-En翻译无监督MTBT与语言迁移。对于语言迁移,我们将最好迁移分数与迁移来语言一起列出

    4.4K30

    中科院张家俊:ChatGPT中提示与指令学习

    二、训练+参数微调“训练+参数微调”是指大模型训练后作为一个良好初始化基础模型,从结构上适配每一个下游任务,并微调大模型参数,使得下游任务性能达到最优。...图 4 训练+参数微调:适应分类任务图 5 训练+参数微调:适应分序列任务图 6 训练+参数微调:适应文本生成任务图 7 “训练+参数微调”范式从上面这些例子做个总结,训练+参数微调方式能够在特定任务取得不错效果...三、训练+提示学习“训练+提示学习”指的是先对大型模型进行训练,在后续任务中保持参数不变,利用提示形式使训练模型能够满足各种下游任务需求。...怎么理解提示呢,提示就是插入到下游任务文本输入中一段特殊文本,可以视为一组特殊参数,触发训练大模型实现特定下游任务同时,保持训练大模型训练和测试一致。提示可以是离散,也可以是连续。...图 11 连续提示五、对比分析我们对“训练+参数微调”和“训练+提示学习”两种方式进行对比。两种方式最重要区别是在支持下游任务形式[7]。

    67130

    GPT、BERT、XLM、GPT-2、BART…你都掌握了吗?一文总结文本生成必备经典模型(二)

    非监督训练 在训练部分,用u表示每一个token(词),当设置窗口长度为k,预测句中第i个词时,则使用第i个词之前k个词,同时也根据超参数Θ,来预测第i个词最可能是什么。...: W_y 表示预测输出时参数,微调时候需要最大化以下函数: GPT 在微调时候也考虑训练损失函数,所以最终需要优化函数为: 当前 SOTA!...为了训练理解句子关系模型,作者训练了二进制下一句预测任务,该任务可以从任何单语料库中轻松生成。...在从单语料库中随机抽取句子连接上学习BPE分词。...TLM目标函数是对MLM扩展,不考虑单语文本流,而是将平行句子连接起来。在源句和目标句中随机掩码处理单词。

    93620

    120亿Stable LM 2上线即开源!2万亿token训练,碾压Llama 2 70B

    总得来说,Stable LM 2 12B参数更多,性能更强。 120亿参数版本包含了基础模型和指令微调模型,并在七种多语言,高达2万亿Token数据集上完成训练。...训练中所用数据均为公开数据,大部分训练数据由其他LLM训练中使用数据源组成,其中包括德语(DE)、西班牙(ES)、法语(FR)、意大利(IT)、荷兰(NL)和葡萄牙(PT)多语言数据。...仔细选择不同数据域混合比例至关重要,尤其是非英语数据和代码数据。 下图展示了Stable LM 2训练数据集中各领域有效训练词块百分比。...实验结果和基准测试 少样本和零样本评估 研究人员通过流行基准评估了Stable LM 2少样本和零样本能力,并将结果与类似大小开源训练模型进行了比较。下表列出了模型评估结果。...与谷歌Gemma 2B(2.5B参数)相比,性能也有显著提高。

    12410
    领券