首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用财务实战案例,理解分组依据的核心原理!

表,位置,内容列表) 比如要在表(源)中的第3行位置插入一行(单击编辑栏的fx按钮即可插入步骤写公式): 其中,如果添加的内容没有写全表中的所有字段,那整行都会出错,比如这样...『 3 - 分组依据的核心原理 』 再回到前面群友提出的问题,要在每个科目分类后面插入空行,那么,如果要分别去定位每个科目最后一个记录所在的行,是很麻烦的。...不过,如果我们对“分组依据”的功能理解比较透切,可以知道,实际上—— 分组的过程就是对同一类内容先分好,或者说挑出了每一组所包含的所有内容,然后再针对各类内容分别进行后续的聚合(计算)——这句是超级重点...具体是什么意思呢,可以通过这个操作来理解: 结果是这样的——所谓分组下的“所有行”,就是这个分组下的所有内容所形成的一张表,而这张表在代码里直接用下划线(_)表示,而你如果选择其他选项,...或者修改公式来实现其他分组功能,实际都是针对这个表的结果进行操作: 『 4 - 问题的解决 』 理解了这个,要对每个分组加空行,就很简单了,只要针对每个分组的表添加空行就好了。

76150
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas | DataFrame中的排序与汇总方法

    大家好,我是架构君,一个会写代码吟诗的架构师。今天说一说pandas | DataFrame中的排序与汇总方法,希望能够帮助大家进步!!!...今天是pandas数据处理专题的第六篇文章,我们来聊聊DataFrame的排序与汇总运算。...在上一篇文章当中我们主要介绍了DataFrame当中的apply方法,如何在一个DataFrame对每一行或者是每一列进行广播运算,使得我们可以在很短的时间内处理整份数据。...Series当中的排序方法有两个,一个是sort_index,顾名思义根据Series中的索引对这些值进行排序。另一个是sort_values,根据Series中的值来排序。...是一个常用的统计方法,可以用来了解DataFrame当中数据的分布情况。

    3.9K20

    Oracle中的分组查询与DML

    1、Group by 进行分组查询, group by 子句可以将数据分为若干个组 1.1 分组查询 注意: 出现在 SELECT 子句中的字段,如果不是包含在多行函数中,那么该字段必须同时在...1.2 带 where 的分组查询 注意: group by 子句要写到 where 子句的后面 a) 查询每个部门的人数和平均工资, 排除 10 部门 select deptno, count(...*), avg(sal) from emp where deptno10 group by deptno order by deptno; 1.3 带 having 的分组查询 注意: where...子句中不允许使用分组函数, 分组函数用于分组前过滤 having 用于过滤分组后的条件 a) 查询每个部门的总工资和平均工资, 排除平均工资低于 1600 的部门 select deptno...分组查询时相关关键词的顺序: from–>where–>group by–>select–>having–>order by a) 在 emp 表中,列出工资最小值小于 2000 的职位 select

    1.2K20

    pandas | 详解DataFrame中的apply与applymap方法

    今天这篇文章我们来聊聊dataframe中的广播机制,以及apply函数的使用方法。 dataframe广播 广播机制我们其实并不陌生, 我们在之前介绍numpy的专题文章当中曾经介绍过广播。...函数与映射 pandas的另外一个优点是兼容了numpy当中的一些运算方法和函数,使得我们也可以将一些numpy当中的函数运用在DataFrame上,这样就大大拓展了使用方法以及运算方法。...比如我们可以这样对DataFrame当中的某一行以及某一列应用平方这个方法。 ? 另外,apply中函数的作用域并不只局限在元素,我们也可以写出作用在一行或者是一列上的函数。...最后我们来介绍一下applymap,它是元素级的map,我们可以用它来操作DataFrame中的每一个元素。比如我们可以用它来转换DataFrame当中数据的格式。 ?...总结 今天的文章我们主要介绍了pandas当中apply与applymap的使用方法, 这两个方法在我们日常操作DataFrame的数据非常常用,可以说是手术刀级的api。

    3K20

    python dataframe筛选列表的值转为list【常用】

    筛选列表中,当b列中为’1’时,所有c的值,然后转为list 2 .筛选列表中,当a列中为'one',b列为'1'时,所有c的值,然后转为list 3 .将a列整列的值,转为list(两种) 4....筛选列表,当a=‘one’时,取整行所有值,然后转为list 具体看下面代码: import pandas as pd from pandas import DataFrame df = DataFrame...0 one 1 一 1 one 1 一 2 two 2 二 3 three 3 三 4 four 1 四 5 five 5 五 """ # 筛选列表中...,当b列中为’1’时,所有c的值,然后转为list b_c = df.c[df['b'] == '1'].tolist() print(b_c) # out: ['一', '一', '四'] #...筛选列表中,当a列中为'one',b列为'1'时,所有c的值,然后转为list a_b_c = df.c[(df['a'] == 'one') & (df['b'] == '1')].tolist()

    5.1K10

    python中的列表与元组

    版权声明:署名,允许他人基于本文进行创作,且必须基于与原先许可协议相同的许可协议分发本文 (Creative Commons) 在python中的数据类型和控制流这篇文章中我们提到过列表...通俗来说,它就是用来存储一系列数据的。比如存储一个班级的学生。 列表中的每个元素可以通过下标(索引)访问,索引从0开始。...a", "b", "c", "d"]; 另外我们也可以创建一个空数组 list = [] 访问列表中的值 访问列表中的值,使用下标即可。...', 'javascript'] extend()方法可用于列表与序列类型的数据合并。...会把序列中的元素一次追加到列表的末尾。 语法: list.extend(seq) seq:可以为列表,元组,字典,集合。

    3.1K40

    用财务实战案例,理解分组依据的核心原理! | Power Query重点

    『 2 - 插入行基础 』 首先,Power Query里提供了一个函数专供给表增加行的——Table.InsertRows,基本用法如下: Table.InsertRows(表,位置,内容列表) 比如要在表...(源)中的第3行位置插入一行(单击编辑栏的fx按钮即可插入步骤写公式): 其中,如果添加的内容没有写全表中的所有字段,那整行都会出错,比如这样: 当然,出错了,上载到Excel时就变成了空行,如下图所示...『 3 - 分组依据的核心原理 』 再回到前面群友提出的问题,要在每个科目分类后面插入空行,那么,如果要分别去定位每个科目最后一个记录所在的行,是很麻烦的。...不过,如果我们对“分组依据”的功能理解比较透切,可以知道,实际上—— 分组的过程就是对同一类内容先分好,或者说挑出了每一组所包含的所有内容,然后再针对各类内容分别进行后续的聚合(计算)!...具体是什么意思呢,可以通过这个操作来理解: 结果是这样的——所谓分组下的“所有行”,就是这个分组下的所有内容所形成的一张表,而这张表在代码里直接用下划线(_)表示,而你如果选择其他选项,或者修改公式来实现其他分组功能

    1.5K30

    Python中的DataFrame模块学

    初始化DataFrame   创建一个空的DataFrame变量   import pandas as pd   import numpy as np   data = pd.DataFrame()   ...重新调整index的值   import pandas as pd   data = pd.DataFrame()   data['ID'] = range(0,3)   # data =   # ID...('user.csv')   print (data)   将DataFrame数据写入csv文件   to_csv()函数的参数配置参考官网pandas.DataFrame.to_csv   import...异常处理   过滤所有包含NaN的行   dropna()函数的参数配置参考官网pandas.DataFrame.dropna   from numpy import nan as NaN   import...'表示去除行 1 or 'columns'表示去除列   # how: 'any'表示行或列只要含有NaN就去除,'all'表示行或列全都含有NaN才去除   # thresh: 整数n,表示每行或列中至少有

    2.5K10

    (六)Python:Pandas中的DataFrame

    目录 基本特征 创建 自动生成行索引 自定义生成行索引 使用 索引与值 基本操作 统计功能  ---- 基本特征 一个表格型的数据结构 含有一组有序的列(类似于index) 大致可看成共享同一个index...的Series集合 创建         DataFrame与Series相比,除了可以每一个键对应许多值之外,还增加了列索引(columns)这一内容,具体内容如下所示: 自动生成行索引         ...admin  2 3  admin  3 另一种删除方法     name  a 1  admin  1 3  admin  3 (1)添加列         添加列可直接赋值,例如给 aDF 中添加...,但这种方式是直接对原始数据操作,不是很安全,pandas 中可利用 drop()方法删除指定轴上的数据,drop()方法返回一个新的对象,不会直接修改原始数据。...对象的修改和删除还有很多方法,在此不一一列举,有兴趣的同学可以自己去找一下 统计功能  DataFrame对象成员找最低工资和高工资人群信息          DataFrame有非常强大的统计功能,它有大量的函数可以使用

    3.8K20

    介绍python中的列表与元组

    1.函数 函数 2.列表与元组 在编程中,经常需要使用变量来保存数据,如果数据比较少,我们创建几个变量也就算了,那如果数据很多呢。 a = 1 b = 2 c = 3 ......甚至有些时候数据多到你都不清楚到底有多少,那么就需要使用到列表了。 列表是一种让程序员再代码中批量表示/保存数据的方式。 那什么是元组呢? 元组和列表相比,非常类似。...可以直接使用print来打印list中的元素。 alist = [1,2,3,4,5] print(alist) # [1, 2, 3, 4, 5] 要注意的是,列表是允许存放不同类型的数据的。...alist = [1,'hahhaaa',1.0] print(alist) #[1, 'hahhaaa', 1.0] 2.2 下标访问 可以通过下标访问操作符[]来获取列表中的任意元素。...另外再python中很多时候默认的集合类型就是元组。

    7810

    Python中的groupby分组

    写在前面:之前我对于groupby一直都小看了,而且感觉理解得不彻底,虽然在另外一篇文章中也提到groupby的用法,但是这篇文章想着重地分析一下,并能从自己的角度分析一下groupby这个好东西~...OUTLINE 根据表本身的某一列或多列内容进行分组聚合 通过字典或者Series进行分组 根据表本身的某一列或多列内容进行分组聚合 这个是groupby的最常见操作,根据某一列的内容分为不同的维度进行拆解...,将同一维度的再进行聚合 按一列进行聚合 import pandas as pd import numpy as np df = pd.DataFrame({ 'key1':list('aabba...Series传入 data2 = people.groupby(mapping2,axis=1).mean() 无论solution1还是2,本质上,都是找index(Series)或者key(字典)与数据表本身的行或者列之间的对应关系...,在groupby之后所使用的聚合函数都是对每个group的操作,聚合函数操作完之后,再将其合并到一个DataFrame中,每一个group最后都变成了一列(或者一行)。

    2K30

    python列表中的赋值与深浅拷贝

    首先创建一个列表 a=[[1,2,3],4,5,6] 一、赋值 a=[[1,2,3],4,5,6] b=a a[0][1]='tom' print(a) print(b) 结果: [[1, 'tom',...b列表改变, 只要改变其中一个,另一个也会跟着变,这是因为a 和b共用一块内存,没有创建新的内存, 他们是相同的,他们指向同一个内存区域。...结果: [[1, 2, 3], 'tom', 5, 6]    [[1, 2, 3], 4, 5, 6] 总结:从上面代码可以看出来浅拷贝是重新开辟一块内存,拷贝第一层数据,不拷贝内部子元素 在本代码中,...b列表重新开辟了一块内存放元素【b【0】,4,5,6】,也就是第一层内容, 然后b【0】的位置指向了a【0】指向的内存位置 三、深拷贝   使用copy函数 重新开辟一块内存,存放拷贝列表的所有内容。...a集合与b集合互不影响 import copy a=[[1,2,3],4,5,6] b=copy.deepcopy(a) a[1]='tom' print(a) print(b) 结果: [[1,

    92940

    访问和提取DataFrame中的元素

    访问元素和提取子集是数据框的基本操作,在pandas中,提供了多种方式。...对于一个数据框而言,既有从0开始的整数下标索引,也有行列的标签索引 >>> df = pd.DataFrame(np.random.randn(4, 4), index=['r1', 'r2', 'r3...Name: r1, dtype: float64 # 根据单个行列标签,访问对应元素 >>> df.loc['r1','A'] -0.22001819046457136 # 也支持多个行列标签,用列表的写法...-1.159992 r4 -2.254314 -1.228511 -2.080118 -0.212526 r5 1.000000 1.000000 1.000000 1.000000 4. iloc 与loc...>>> df.iat[0, 0] -0.22001819046457136 pandas中访问元素的具体方法还有很多,熟练使用行列标签,位置索引,布尔数组这三种基本的访问方式,就已经能够满足日常开发的需求了

    4.4K10

    SQL中的分组集

    分组集的定义 是多个分组的并集,用于在一个查询中,按照不同的分组列对集合进行聚合运算,等价于对单个分组使用"UNION ALL",计算多个结果集的并集。...分组集种类 SQL Server的分组集共有三种 GROUPING SETS, CUBE, 以及ROLLUP, 其中 CUBE和ROLLUP可以当做是GROUPING SETS的简写版 GROUPING...这样不仅减少了代码,而且这样的效率会比UNION ALL的效率高。通常GROUPING SETS使用在组合分析中。...,其作用是对每个列先进行一次分组,并且对第一列的数据在每个组内还进行一次汇总,最后对所有的数据再进行一次汇总,所以相比GROUPING SETS会多了个所以数据的汇总。...总结 分组集类似于Excel的透视图,可以对各类数据进行组内计算,这里不止可以进行数量统计,也可以进行求和,最大最小值等操作。是我们在进行数据分析时候经常使用到的一组功能。

    9210

    SparkMLLib中基于DataFrame的TF-IDF

    这个权重叫做"逆文档频率"(Inverse Document Frequency,缩写为IDF),它的大小与一个词的常见程度成反比。...字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。TF-IDF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级。...二 TF-IDF统计方法 本节中会出现的符号解释: TF(t,d):表示文档d中单词t出现的频率 DF(t,D):文档集D中包含单词t的文档总数。...log表示对得到的值取对数。 TF-IDF 数学表达式 可以看到,TF-IDF与一个词在文档中的出现次数成正比,与该词在整个语言中的出现次数成反比。...三 Spark MLlib中的TF-IDF 在MLlib中,是将TF和IDF分开,使它们更灵活。 TF: HashingTF与CountVectorizer这两个都可以用来生成词频向量。

    2K70
    领券