索引按照是否分区可以分为分区索引(Partitioned Indexes)和非分区索引(NonPartitioned Indexes),如下图所示:
表可以按range,hash,list分区,表分区后,其上的索引和普通表上的索引有所不同,Oracle对于分区表上的索引分为2类,即局部索引和全局索引,下面分别对这2种索引的特点和局限性做个总结。 局部索引local index
墨墨导读:本文来自墨天轮用户投稿,详细描述Oracle分区表之创建维护分区表索引的步骤。
Range分区是应用范围比较广的表分区方式,它是以列的值的范围来做为分区的划分条件,将记录存放到列值所在的range分区中。
目前的分区方案都依赖KV数据模型。KV模型简单,都是通过K访问记录,自然可根据K确定分区,并将读写请求路由到负责该K的分区。
在前面,我们介绍过怎么样直接创建一个分区表,也介绍过怎么将一个普通表转换成一个分区表。那么,这两种方式创建的表有什么区别呢?现在,我又最新地创建了两个表:
在Oracle数据库中,什么是不可用索引(Unusable Indexes),哪些操作会导致索引变为不可用(unusable)即失效状态?
局部索引等价于我们通常说的本地索引,与主表的数据结构保持一对一的关系。局部索引没有单独分区的概念,一般来讲,主表的分区方式决定局部索引的分区方式,也就是说假设主表有10个分区,那么对于每个分区来讲,都有一个对应的局部索引。
分区索引(或索引分区)主要是针对分区表而言的。随着数据量的不断增长,普通的堆表需要转换到分区表,其索引呢,则对应的转换到分区索引。分区索引的好处是显而易见的。就是简单地把一个索引分成多个片断,在获取所需数据时,只需要访问更小的索引片断(块)即可实现。同时把分区放在不同的表空间可以提高分区的可用性和可靠性。本文主要描述了分区索引的相关特性并给出演示示例。
第五章 创建高性能的索引 1.索引类型 1.1 普通索引 NORMAL: 是最基本的索引,它没有任何限制。 1.2 唯一索引 SPATIAL: 与前面的普通索引类似,不同的就是:索引列的值必须唯一,但允许有空值。如果是组合索引,则列值的组合必须唯一。 1.3 主键索引: 是一种特殊的唯一索引,一个表只能有一个主键,不允许有空值。一般是在建表的时候同时创建主键索引: 1.4 组合索引: 指多个字段上创建的索引,只有在查询条件中使用了创建索引时的第一个字段,索引才会被使用。使用组合索引时遵循最左前缀集
次级索引(secondary index),即主键以外的列的索引;由于分区都是基于主键的,在针对有分区的数据建立次级索引时,就会遇到一些困难。
三个月前的一次生产环境数据库操作事故,至今仍然历历在目、难以忘怀。这次血与泪的教训需要被记录下来,鉴前毖后。这就是这篇迟来的教训总结的成文背景。
《高性能MySQL》中:分区的一个主要目的是将数据按照一个较粗的粒度分在不同的表中,这样做可以将相关的数据放在一起,另外,如果想一次批量删除整个分区的数据也会变得很方便。
分区机制减少管理负担,是因为与在一个大对象上执行操作相比,在小对象上执行同样的操作更为容易,速度更快,而且占用的资源也更少。
有同事问一个问题, 一张非分区表,是否可以创建分区索引? 答案是可以,但分区索引的类型有限制。 MOS这篇文章给出了答案,以及一些例子,What Is The Global Partitioned I
分区与副本是很容易混淆的概念,我们这里离清一下两者。 数据分区的每个副本可以存储在多个节点上。这意味着,即使每个记录恰好属于一个分区,它仍然可以存储在几个不同的节点上进行容错。
ClickHouse 是一个用于联机分析处理(OLAP)的列式数据库管理系统(Columnar DBMS)。
作者介绍 赵勇 云和恩墨北区技术工程师 专注于SQL审核和优化相关工作。曾经服务的客户涉及金融保险、电信运营商、政府、生产制造等行业。 分区裁剪的定义 分区表的实质是采用化整为零的思想,将一个大对象划
Hey, 宝藏们!猫头虎又回来啦!🐯 最近,我发现很多小伙伴都在搜索“PostgreSQL 数据分区”,“PostgreSQL 分区优化”等关键词。数据分区是如何提高查询性能的神奇力量?让我们一起深入探索《PostgreSQL数据分区:原理与实战》吧!
在设计数据库时,经常没有考虑到表分区的问题,往往在数据表承重的负担越来越重时,才会考虑到分区方式,这时,就涉及到如何将普通表转换成分区表的问题了。
openGauss分区表支持两种索引:全局(global)索引和本地(local)索引。
在数据库技术的发展历程中,随着数据量的不断增长和业务需求的日益复杂,如何高效地存储、查询和处理数据成为了关键挑战。OceanBase作为一款高性能、高可用的分布式关系数据库,通过其独特的分区机制,为这一挑战提供了有力的解决方案。
当表中的数据量不断增大,查询数据的速度就会变慢,应用程序的性能就会下降,这时就应该考虑对表进行分区。表进行分区后,逻辑上表仍然是一张完整的表,只是将表中的数据在物理上存放到多个表空间(物理文件上),这样查询数据时,不至于每次都扫描整张表。
在我们实际开发中,随着业务的不断增加,数据量也在不断的攀升,这样就离不开一个问题:数据查询效率优化 根据自己的以往实际项目工作经验和学习所知,现在对SQL查询优化做一个简单的梳理总结,总结的不好之处,望多多指点交流学习 主要通过以下几个点来进行总结分析:索引、语句本身、分区存储、分库分表
MySQL 数据库在 5.1 版本时添加了对分区(partitioning)的支持。分区的过程是将一个表或索引分解成多个更小、更可管理的部分。就访问数据库的应用而言,从逻辑上来讲,只有一个表或一个索引,但是在物理上这个表或索引可能由数十个物理分区组成。
使用起来和不分区是一样的,看起来只有一个数据库,其实有多个分区文件,比如我们要插入一条数据,不需要指定分区,MySQL会自动帮我们处理
注:新建表及其索引属于哪个表空间根据项目自己的规划自行判断。实际网优项目中用户自定义的表空间都是DBS_D开头的是存放数据,DBS_I开头的是存放索引。
首先要先介绍一下InnoDB逻辑存储结构和区的概念,它的所有数据都被逻辑地存放在表空间,表空间又由段,区,页组成。
记得上次ACOUG年会(《ACOUG年会感想》),请教杨长老问题的时候,谈到分区,如果执行分区删除的操作,就会导致全局索引失效,除了使用12c以上版本能避免这个问题外,指出另外一种解决的方式,表面看很巧妙,实则是对分区原理的深入理解。
普通索引:(index) 对关键字没有要求,如果一个索引在多个字段提取关键字,称为复合索引
如果要深入了解Apache Hudi技术的应用或是性能调优,那么明白源码中的原理对我们会有很大的帮助。Upsert是Apache Hudi的核心功能之一,主要完成增量数据在HDFS/对象存储上的修改,并可以支持事务。而在Hive中修改数据需要重新分区或重新整个表,但是对于Hudi而言,更新可以是文件级别的重写或是数据先进行追加后续再重写,对比Hive大大提高了更新性能。upsert支持两种模式的写入Copy On Write和Merge On Read ,下面本文将介绍Apache Hudi 在Spark中Upsert的内核原理。
Linux,Docker,MySQLCommunity8.0.31,InnoDB。
1、数据库中某个表中的数据很多。很多是什么概念?一万条?两万条?还是十万条、一百万条?这个,我觉得是仁者见仁、智者见智的问题。当然数据表中的数据多到查询时明显感觉到数据很慢了,那么,你就可以考虑使用分区表了。如果非要我说一个数值的话,我认为是100万条。
作者:腾讯云 ES 团队 背景概述 当您有日志、监控等持续产生的时序数据存储需求时,通常通过滚动Elasticsearch索引的方式完成,该方式虽然能帮忙您完成基本的数据管理功能,但是仍然需要结合索引模版、索引生命周期管理、索引别名等实现较完整的索引管理,有一定的使用门槛。另外也有一定的索引维护成本,例如需准确的进行索引分片数预估,避免索引分片数不足影响写入可用性、不合理的索引分片数设置导致分片数过多影响集群稳定性,以及索引所在节点故障阻塞写入时需要介入滚动新的索引等问题。 为了解决这些问题,腾讯云Ela
文章摘要:一个小小的MySQL数据库B-Tree索引可能会带来意想不到的性能优化提升……
表引擎是ClickHouse设计实现中的一大特色。可以说,是表引擎决定了一张数据表最终的“性格”,比如数据表拥有何种特性、数据以何种形式被存储以及如何被加载。ClickHouse拥有非常庞大的表引擎体系,截至本书完成时,其共拥有合并树、外部存储、内存、文件、接口和其他6大类20多种表引擎。而在这众多的表引擎中,又属合并树(MergeTree)表引擎及其家族系列(*MergeTree)最为强大,在生产环境的绝大部分场景中,都会使用此系列的表引擎。因为只有合并树系列的表引擎才支持主键索引、数据分区、数据副本和数据采样这些特性,同时也只有此系列的表引擎支持ALTER相关操作。合并树家族自身也拥有多种表引擎的变种。其中MergeTree作为家族中最基础的表引擎,提供了主键索引、数据分区、数据副本和数据采样等基本能力,而家族中其他的表引擎则在MergeTree的基础之上各有所长。例如ReplacingMergeTree表引擎具有删除重复数据的特性,而SummingMergeTree表引擎则会按照排序键自动聚合数据。如果给合并树系列的表引擎加上Replicated前缀,又会得到一组支持数据副本的表引擎,例如ReplicatedMergeTree、ReplicatedReplacingMergeTree、ReplicatedSummingMergeTree等。合并树表引擎家族如图所示:
1、如果我们定义了主键(PRIMARY KEY),那么InnoDB会选择主键作为聚集索引、如果没有显式定义主键,则InnoDB会选择第一个不包含有NULL值的唯一索引作为主键索引、如果也没有这样的唯一索引,则InnoDB会选择内置6字节长的ROWID作为隐含的聚集索引(ROWID随着行记录的写入而主键递增,这个ROWID不像ORACLE的ROWID那样可引用,是隐含的)。
存储引擎:可以看作是数据表存储数据的一种格式,不同的格式具有的特性也各不相同。 举例说明:只有InnoDB存储引擎支持事务、外键、行级锁等特性,而MyISAM则支持压缩机制等特性。 存储引擎的特点:本身是MySQL数据库服务器的底层组件之一,最大的特点是采用“可插拔”的存储引擎架构。 “可插拔”的理解:指的是对正在运行的MySQL服务器依然可根据实际需求使用特定语句加载(插入,INSTALL PLUGIN语句)或卸载(拔出,UNINSTALL PLUGIN语句)所需的存储引擎文件。
注意:MySQL 中的分区表在定义分区键时,必须确保分区键列包含在表的主键(Primary Key)或唯一键(Unique Key)中,为了确保分区表的数据唯一性和正确性。如果不将分区键列包含在主键或唯一键中,可能会导致数据分布不正确,从而产生错误或数据冗余。
1、如果我们定义了主键(PRIMARY KEY),那么InnoDB会选择主键作为聚集索引。如果没有显式定义主键,则InnoDB会选择第一个不包含有NULL值的唯一索引作为主键索引。如果也没有这样的唯一索引,则InnoDB会选择内置6字节长的ROWID作为隐含的聚集索引(ROWID随着行记录的写入而主键递增,这个ROWID不像ORACLE的ROWID那样可引用,是隐含的)。
当一个数据表的数据量达到千万级别以后,每次查询都需要消耗大量的时间,所以当表数据量达到一定量级后我们需要对数据表水平切割。水平分区分表就是把逻辑上的一个表,在物理上按照你指定的规则分放到不同的文件里,把一个大的数据文件拆分为多个小文件,还可以把这些小文件放在不同的磁盘下。这样把一个大的文件拆分成多个小文件,便于我们对数据的管理。
1、如果我们定义了主键(PRIMARY KEY),那么InnoDB会选择主键作为聚集索引。
编辑手记:Oracle数据库中有两种类型的块,标准块和非标准块。非标准块的引入给数据库的管理带来了方便,但在使用的时候也有一些限制。本文将会详细解读块大小对于分区表的影响。 看文档的时候提到了多个BL
OLAP作为一个我们重度依赖的组件,它的优化也是我们在实际工作和面试中经常遇到的问题。
1. F_TestDate 为分区函数名,分区的字段是datetime类型
领取专属 10元无门槛券
手把手带您无忧上云