CART(Classification and Regression Trees)算法是一种用于分类和回归任务的决策树模型。这一模型由Breiman等人于1986年提出,现如今已广泛应用于各种数据挖掘任务和机器学习问题。
在数学推导+纯Python实现机器学习算法4:决策树之ID3算法中笔者已经对决策树的基本原理进行了大概的论述。本节将在上一讲的基础上继续对另一种决策树算法CART进行讲解。
在《从零开始学Python【34】--CART决策树(理论部分)》期中我们介绍了有关CART决策树的构造和节点选择的理论知识,但理论终究需要实战进行检验。本文我们就从实战的角度,继续介绍CART决策树的实际应用。
在当今这个人工智能时代,似乎人人都或多或少听过机器学习算法;而在众多机器学习算法中,决策树则无疑是最重要的经典算法之一。这里,称其最重要的经典算法是因为以此为基础,诞生了一大批集成算法,包括Random Forest、Adaboost、GBDT、xgboost,lightgbm,其中xgboost和lightgbm更是当先炙手可热的大赛算法;而又称其为之一,则是出于严谨和低调。实际上,决策树算法也是个人最喜爱的算法之一(另一个是Naive Bayes),不仅出于其算法思想直观易懂(相较于SVM而言,简直好太多),更在于其较好的效果和巧妙的设计。似乎每个算法从业人员都会开一讲决策树专题,那么今天本文也来达成这一目标。
决策树在很多公司都实际运用于风险控制,之前阐述了决策树-ID3算法和C4.5算法和Python中应用决策树算法预测客户等级。
一、算法介绍 分类回归树算法:CART(Classification And Regression Tree)算法也属于一种决策树,和之前介绍了C4.5算法相类似的决策树。CART采用一种二分递归分割的技术,将当前的样本集分为两个子样本集,使得生成的的每个非叶子节点都有两个分支。因此,CART算法生成的决策树是结构简洁的二叉树。 CART算法是由以下两部组成: (1)决策树生成:基于训练数据集生成的决策树,生成的决策树要尽量大; (2)决策树剪枝:用验证数据集对已生成的树进行剪枝并
https://blog.csdn.net/weixin_41194171/article/details/85042720
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_35512245/article/details/54927178
如果想从事数据挖掘或者机器学习的工作,掌握常用的机器学习算法是非常有必要的, 常见的机器学习算法:
机器学习/人工智能的子领域在过去几年越来越受欢迎。目前大数据在科技行业已经炙手可热,而基于大量数据来进行预测或者得出建议的机器学习无疑是非常强大的。一些最常见的机器学习例子,比如Netflix的算法可以根据你以前看过的电影来进行电影推荐,而Amazon的算法则可以根据你以前买过的书来推荐书籍。
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 前言 在(机器学习(9)之ID3算法详解及python实现)中讲到了ID3算法,在(机器学习(11)之C4.5详解与Python实现(从解决ID3不足的视角))中论述了ID3算法的改进版C4.5算法。对于C4.5算法,也提到了它的不足,比如模型是用较为复杂的熵来度量,使用了相对较为复杂的多叉树,只能处理分类不能处理回归等。对于这些问题, CART算法大部分做了改进。由于CART算法可以
在决策树算法原理(上)这篇里,我们讲到了决策树里ID3算法,和ID3算法的改进版C4.5算法。对于C4.5算法,我们也提到了它的不足,比如模型是用较为复杂的熵来度量,使用了相对较为复杂的多叉树,只能处理分类不能处理回归等。对于这些问题, CART算法大部分做了改进。CART算法也就是我们下面的重点了。由于CART算法可以做回归,也可以做分类,我们分别加以介绍,先从CART分类树算法开始,重点比较和C4.5算法的不同点。接着介绍CART回归树算法,重点介绍和CART分类树的不同点。然后我们讨论CART树的建树算法和剪枝算法,最后总结决策树算法的优缺点。
C4.5算法是一种广泛应用于机器学习和数据挖掘的决策树算法。它是由Ross Quinlan教授在1993年提出的,作为其早期ID3(Iterative Dichotomiser 3)算法的一种扩展和改进。这个算法被设计用来将一个复杂的决策问题分解成一系列简单的决策,然后构建一个决策树模型来解决这个问题。
推荐导读:本篇为树模型系列第三篇,旨在从最简单的决策树开始学习,循序渐进,最后理解并掌握复杂模型GBDT,Xgboost,为要想要深入了解机器学习算法和参加数据挖掘竞赛的朋友提供帮助。
前面介绍的决策树通常还有一个名字,叫做 CART(读音与cut相近)。CART 是 Classification And Regression Tree 的首字母缩写,通过 Classification And Regression Tree 的字面意思可以看出,CART 这种决策树既能够解决分类问题(Classification)也能够解决回归问题(Regression)。每个节点根据某种衡量系统不确定性的指标(信息熵或基尼系数)来找到某个合适的维度 d 以及维度 d 上的阈值 v,根据 d 和 v 对当前节点中的数据进行二分,通过这种方式得到的决策树一定是一颗二叉树,这也是 CART 这种决策树的特点。
决策树(Decision Tree)是一种常见的机器学习算法,被广泛应用于分类和回归任务中。并且再其之上的随机森林和提升树等算法一直是表格领域的最佳模型,所以本文将介绍理解其数学概念,并在Python中动手实现,这可以作为了解这类算法的基础知识。
决策树是属于机器学习监督学习分类算法中比较简单的一种,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。
决策树decision tree分类法是一种简单但广泛使用的分类技术。以是否贷款违约的二分类问题为例,当我们希望根据给定的训练集习得一个模型对新出现的贷款人进行分类时,经常需要从大量的贷款申请单中识别出来哪些贷款人是劣质的贷款人(容易拖欠贷款)。想象一下客户经理和助手针对一个贷款者进行的如下对话:
这是一个新的系列,主要讲机器学习的相关算法,希望想入门的你能耐心看完《写在前面的话》
專 欄 ❈PytLab,Python 中文社区专栏作者。主要从事科学计算与高性能计算领域的应用,主要语言为Python,C,C++。熟悉数值算法(最优化方法,蒙特卡洛算法等)与并行化 算法(MPI,OpenMP等多线程以及多进程并行化)以及python优化方法,经常使用C++给python写扩展。 知乎专栏:化学狗码砖的日常 blog:http://pytlab.org github:https://github.com/PytLab ❈ 前言 最近由于开始要把精力集中在课题的应用上面了,这篇总结之后算法
从零开始学Python【33】--KNN分类回归模型(实战部分) 从零开始学Python【32】--KNN分类回归模型(理论部分) 从零开始学Python【31】—DBSCAN聚类(实战部分) 从零开始学Python【30】--DBSCAN聚类(理论部分)
由于某些不可抗拒的原因,LaTeX公式无法正常显示. 点击这里查看PDF版本 Github: https://github.com/yingzk/MyML 博 客: https://www.yingjoy.cn/ 1. 决策树(Decision Tree)简介 1.1. 决策树的原理 决策树是属于机器学习监督学习分类算法中比较简单的一种,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所
在涉及非结构化数据(图像、文本等)的预测问题中,人工神经网络显著优于所有其他算法或框架。但当涉及到中小型结构/表格数据时,基于决策树的算法现在被认为是最佳方法。而基于决策树算法中最惊艳的,非XGBoost莫属了。
人工智能之机器学习主要有三大类:1)分类;2)回归;3)聚类。今天我们重点探讨一下CART算法。
决策树算法是计算机科学家罗斯.昆兰(下图大佬,没错,是图灵,因为我没找到昆兰大佬的照片)在学术休假时提出的。期间,他到斯坦福大学访问,选修了图灵的助手 D.Michie 开设的一门研究生课程。课上布置的一个大作业就是用程序写出一个完备正确的规则,以判定国际象棋的残局是否会在2步后被将死,昆兰在这个任务中得到灵感,之后又将该部分工作整理出来于1979年发表,并命名为 ID3 算法。之后很多其他的决策树算法也相继问世,比如ID4、ID5、C4.5、和 CART(Classification and Regression Tree) 等。scikit-learn 中决策树的实现是基于 CART。
我们知道,在ID3算法中我们使用了信息增益来选择特征,信息增益大的优先选择。在C4.5算法中,采用了信息增益比来选择特征,以减少信息增益容易选择特征值多的特征的问题。但是无论是ID3还是C4.5,都是基于信息论的熵模型的,这里面会涉及大量的对数运算。能不能简化模型同时也不至于完全丢失熵模型的优点呢?有!CART分类树算法使用基尼系数 来代替信息增益比,基尼系数代表了模型的不纯度,基尼系数越小,则不纯度越低,特征越好。这和信息增益(比)是相反的。
一棵树在现实生活中有许多类比,并且结果表明它广泛地影响机器学习,包括分类和回归。 在决策分析中,决策树可用于在视觉上和明确地表示决策和作出决策。 顾名思义,它是使用树状的决策模型。 虽然它是数据挖掘中常用的工具以用于推导达到特定目标的策略,但它也广泛用于机器学习,这将是本文的重要关注点。
今天要介绍的是一个应用非常广泛的机器学习模型——决策树。首先从一个例子出发,看看女神是怎样决策要不要约会的;然后分析它的算法原理、思路形成的过程;由于决策树非常有价值,还衍生出了很多高级版本。决策树是机器学习中强大的有监督学习模型,本质上是一个二叉树的流程图,其中每个节点根据某个特征变量将一组观测值拆分。决策树的目标是将数据分成多个组,这样一个组中的每个元素都属于同一个类别。决策树也可以用来近似连续的目标变量。在这种情况下,树将进行拆分,使每个组的均方误差最小。决策树的一个重要特性可解释性好,即使你不熟悉机器学习技术,也可以理解决策树在做什么。
决策树的思想来源可以追溯到古希腊时期,当时的哲学家们就已经开始使用类似于决策树的图形来表示逻辑推理过程。然而,决策树作为一种科学的决策分析工具,其发展主要发生在20世纪。
本教程介绍了用于分类的决策树,即分类树,包括分类树的结构,分类树如何进行预测,使用scikit-learn构造分类树,以及超参数的调整。
作为新兴起的、高度灵活的一种机器学习算法,随机森林(Random Forest,简称RF)拥有广泛的应用前景,从市场营销到医疗保健保险,既可以用来做市场营销模拟的建模,统计客户来源,保留和流失,也可用来预测疾病的风险和病患者的易感性。最初,我是在参加校外竞赛时接触到随机森林算法的。最近几年的国内外大赛,包括2013年百度校园电影推荐系统大赛、2014年阿里巴巴天池大数据竞赛以及Kaggle数据科学竞赛,参赛者对随机森林的使用占有相当高的比例。此外,据我的个人了解来看,一大部分成功进入答辩的队伍也都选择了Random Forest 或者 GBDT 算法。所以可以看出,Random Forest在准确率方面还是相当有优势的。
关键词:减少程度。 比如找女朋友,看了女朋友的建立,我对她的信息熵为0.3,得知她喜欢coding之后我对她的信息熵为0.1,那么信息增益即为0.3-0.1=0.2
人们的决策过程是一个类似“观察因素A的情况,再根据A的情况观察因素B的情况”的形式,从而形成一种树状结构。决策树学习是模仿人类这一结构化决策过程而发展起来的一种有监督机器学习方法。 它可以被认为是if-then规则的集合,也可以被认为是定义在特征空间和类空间上的条件概率分布。
随着经济的快速发展和城市化进程的不断推进,土地资源的利用和管理成为了一项极为重要的任务。而对于全国各省市而言,如何合理利用土地资源,通过科学的方法进行规划和管理,是提高土地利用效率的关键。
决策树是一种非参数的监督学习方法,它主要用于分类和回归问题。 决策树模型通过一系列if then决策规则的集合,将特征空间划分成有限个不相交的子区域,对于落在相同子区域的样本,决策树模型给出相同的预测值。
背景 决策树(Decision Tree)可以说是当下使用最为广泛的机器学习模型,任何一个刚刚学习人工智能或者数据挖掘的同学可能都接触过实现决策树的课程作业。 决策树的想法可以追溯到二十世纪60年代(Hunt's Algorithm),但是那个时候的计算机速度比现在慢好多个数量级,内存也很小,能做一些简单的方程求解就谢天谢地了。随着硬件计算能力的提升,也是到了90年代,决策树算法才真正逐渐走进更多的实践舞台。当时比较常见的决策树算法是ID3,C4.5和CART,这三个模型直到今天也被广发使用于各行各业。在我
机器学习(十)——使用决策树进行预测(离散特征值) (原创内容,转载请注明来源,谢谢) 一、绘制决策树 决策树的一大优点是直观,但是前提是其以图像形式展示。如果是{'color': {9: 'yes', 2: {'fly': {0: 'no', 1: {'big': {0: 'no', 1:'yes'}}}}, 3: 'no'}}这种类型的决策树,不够直观。 这就是绘制决策树的目的。 绘制决策树,需要用到python的matplotlib类库,其带有丰富的注解、绘图等功能。我希望更加专注于算法本身,而
CART算法全称是Classification and regression tree,也就是分类回归树的意思。和之前介绍的ID3和C4.5一样,CART算法同样是决策树模型的一种经典的实现。决策树这个模型一共有三种实现方式,前面我们已经介绍了ID3和C4.5两种,今天刚好补齐这最后一种。
2.ID3和C4.5算法可以处理实数特征吗?如果可以应该怎么处理?如果不可以请给出理由?
随机森林(Random Forest)是一个非常灵活的机器学习方法,从市场营销到医疗保险有着众多的应用。例如用于市场营销对客户获取和存留建模或预测病人的疾病风险和易感性。随机森林能够用于分类和回归问题,可以处理大量特征,并能够帮助估计用于建模数据变量的重要性。我们先了解随机森林中森林和随机的概念。
决策树(Decision Tree)是一种非常经典的机器学习算法,常见的决策树算法包括ID3、C4.5、CART树等。
决策树分为两大类:分类树和回归树,分类树用于分类标签值,回归树用于预测连续值,常用算法有ID3、C4.5、CART等。
我在Twitter上偶然遇到了chefboost,因为我之前从未听说过它,所以我决定快速查看并测试它。在本文中,我将简要介绍这个库,并提到它与常用库scikit-learn的主要区别,并展示一个在实践中使用chefboost的快速示例。
从统计学的角度来讲,将模型的性能寄希望于单棵决策树是不稳健的,这意味着它在处理未知数据时预测结果的方差是较大的。如同我们做重要决定时会考虑多个专家的意见,元算法meta-algorithm主张综合多个分类器的结果做预测,元算法也被称为集成方法ensemble method,主要思路包括:
随机森林一个已被证明了的成功的集成分类器,特别是用在多维分类问题上更是体现出其强大之处。一个随机森林是一个决策树的集合,可以看作是一个分类器包括很多不同的决策树。整个算法包括三部分:特征和数据的分组,训练决策树,最后的结果投票。 1. 随机森林的分组策略 为了保持在随机森林中每个决策树的差异性,选择在生成决策树的时候选择不同特征集在不同的数据集上进行训练,生成最终的决策树。因此,我们需要对数据集和特征集进行分组,在分组的过程中,分别对数据集的分组和对特征集的分组。 在分组的过程中,采用基于Bootstr
XGBOOST:简单来说是集成了很多个基学习器(如Cart决策树)的模型。它是集成学习的串行方式(boosting)的一种经典实现,是广泛应用在工业、竞赛上的一大神器。
继续关于决策树的内容,本篇文章主要学习了决策树的剪枝理论和基于二叉树的CART算法。主要内容:
领取专属 10元无门槛券
手把手带您无忧上云