推荐的制作工具有:D3、Protovis、RAWGraphs、The R Graph Gallery、Vega。 6、网络图 也称为「网络地图」或「节点链路图」,用来显示事物之间的关系类型。...推荐的制作工具有:The R Graph Gallery、Cookbook for R。...推荐的制作工具有:D3。 15、面积图 面积图 (Area Graph) 是折线图的一种,但线下面的区域会由颜色或纹理填满。...在量化波形图中,每个波浪的形状大小都与每个类别中的数值成比例。与波形图平行流动的轴用作时间刻度。我们也可以用不同颜色区分每个类别,或者通过改变色彩来显示每个类别的附加定量值。...在南丁格尔玫瑰图中,代表数值的是分段面积,而不是其半径。 推荐的制作工具有:Datamatic、Infogr.am。
推荐的制作工具有:The R Graph Gallery、Cookbook for R。...在量化波形图中,每个波浪的形状大小都与每个类别中的数值成比例。与波形图平行流动的轴用作时间刻度。我们也可以用不同颜色区分每个类别,或者通过改变色彩来显示每个类别的附加定量值。...在南丁格尔玫瑰图中,代表数值的是分段面积,而不是其半径。 推荐的制作工具有:Datamatic、Infogr.am。...此外,条形也可以如堆叠式条形图般堆叠起来。 推荐的制作工具有:jChartFX、Bokeh。...我们在地图上每个区域以不同深浅度的颜色表示数据变量,例如从一种颜色渐变成另一种颜色、单色调渐进、从透明到不透明、从光到暗,甚至动用整个色谱。 但缺点是无法准确读取或比较地图中的数值。
,对产品进行分类的变量,命名为Item_Type,图中以不同的颜色作为显示。...如下图所示: 下面是一个简单的画直方图的例子,使用的是R中的ggplot()和geom_histogram()函数。...()变量,可以将直方图以水平直方图的方法呈现。...下面是一个简单的画堆叠条形图的例子,使用的是R中的ggplot()函数。...图中,黑色的点为离值群。离值群的检测和剔除是数据挖掘中很重要的环节。 下面是一个简单的画箱线图的例子,使用的是R中的ggplot()和geom_boxplot函数。
推荐的制作工具有:The R Graph Gallery、Cookbook for R。 人口金字塔 ?...在量化波形图中,每个波浪的形状大小都与每个类别中的数值成比例。与波形图平行流动的轴用作时间刻度。我们也可以用不同颜色区分每个类别,或者通过改变色彩来显示每个类别的附加定量值。...在南丁格尔玫瑰图中,代表数值的是分段面积,而不是其半径。 推荐的制作工具有:Datamatic、Infogr.am。 旭日图 ?...此外,条形也可以如堆叠式条形图般堆叠起来。 推荐的制作工具有:jChartFX、Bokeh。 热图 ?...我们在地图上每个区域以不同深浅度的颜色表示数据变量,例如从一种颜色渐变成另一种颜色、单色调渐进、从透明到不透明、从光到暗,甚至动用整个色谱。 但缺点是无法准确读取或比较地图中的数值。
(legend=False) # 图例倒序 df.plot.bar(legend='reverse') 坐标轴文字 细心的朋友可能会发现,在上图中x轴标签数字显示是躺着的,怎么坐起来呢?...(figsize=(6,8)) 堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大...# 单直方图 df.a.plot.hist() 堆叠并指定分箱数(默认为 10) # 堆叠并指定分箱数(默认为 10) df.plot.hist(stacked=True, bins=20)...中位数颜色 "caps": "Gray", # 极值颜色 } df.boxplot(color=color, sym="r+") 横向展示 df.boxplot(vert=False, positions...=[1, 4, 5, 6, 8]) 面积图 面积图又称区域图,是将折线图与坐标轴之间的区域使用颜色填充,填充颜色可以很好地突出趋势信息,一般颜色带有透明度会更合适于观察不同序列之间的重叠关系。
坐标轴文字 细心的朋友可能会发现,在上图中x轴标签数字显示是躺着的,怎么坐起来呢? 那么可以通过参数rot设置文字的角度 # x轴标签旋转角度 df.plot.bar(rot=0) ?...图像叠加 不同的图表类型组合在一起 df.a.plot.bar() df.b.plot(color='r') ?...堆叠条形图 # 堆叠条形图 df.plot.barh(stacked=True) ? 直方图 直方图又称为质量分布图,主要用于描述数据在不同区间内的分布情况,描述的数据量一般比较大。...", # 中位数颜色 "caps": "Gray", # 极值颜色 } df.boxplot(color=color, sym="r+") ?...默认情况下,面积图是堆叠的 # 默认是堆叠 df.plot.area() ? 单个面积图 df.a.plot.area() ?
7.1 应用场景--定量数据的分布展示 7.2 绘制原理 7.3 直方图和柱状图的关系 7.4 堆积直方图 7.5 直方图的不同形状 8.饼图 8.1 应用场景--定性数据的比例展示 8.2 绘制原理..., alpha=0.3) plt.show() x: 柱状图中的柱体标签值 y: 柱状图中的柱体高度 align: 柱体对齐方式 color: 柱体颜色 tick_label: 刻度标签值 alpha...color: 柱体的颜色 histtype: 柱体的类型 label: 图例内容 rwidth: 柱体的相对宽度,取值范围是[0.0, 1.0] 7.3 直方图和柱状图的关系 一方面,直方图和柱状图在展现效果上是非常类似的...,只是直方图描述的是连续型数据的分布,柱状图描述的事离散型数据的分布,也可以讲:一个是描述定量数据;另一个是描述定性数据。...fmt: 数据点的标记样式和数据点标记的连接线样式 ecolor: 误差棒的线条颜色 elinewidth: 误差棒的线条粗细 ms: 数据点的大小 mfc: 数据点的标记颜色 mec: 数据点的标记边缘颜色
,易于比较各组数据之间的差别 折线图: 易于比较各组数据之间的差别; 能比较多组数据在同一个维度上的趋势; 每张图上不适合展示太多折线 面积图就是在折线图的基础上,把折线下面的面积填充颜色 : 直方图...,所以它们对歪斜的数据的处理不是很好: 在第一个直方图中,将价格>200的葡萄酒排除了。...在第二个直方图中,没有对价格做任何处理,由于有个别品种的酒价格极高,导致刻度范围变大,导致直方图的价格分布发生变化 。...散点图最适合使用相对较小的数据集以及具有大量唯一值的变量。 有几种方法可以处理过度绘图。...堆叠图(Stacked plots) 展示两个变量,除了使用散点图,也可以使用堆叠图 堆叠图是将一个变量绘制在另一个变量顶部的图表 接下来通过堆叠图来展示最常见的五种葡萄酒 从结果中看出,最受欢迎的葡萄酒是
node用于给出基本的配置项: pad:图中空白分隔空隙的大小; thickness:图中节点的宽度(每个连接处的长方形); line:每个节点的边框线的颜色和粗细; label:每个节点的名字(包含一层...堆叠面积图可以用来比较在一个区域内的多个变量,适合展示整体数据的变化趋势。...堆叠面积图和普通的面积图的区别是每个数据值序列映射的区域起点都是上一个数据值序列顶端。...,在瀑布图中,底部贴着坐标轴的条图表示阶段性统计值(汇总值),其余的表示增长或者减少(相对值)。...绘制直方图时,最简单的我们只需要一个维度的数值型数据即可,复杂的我们可以同时使用多组数据绘制组合直方图。 切记不要把直方图和柱状图混为一谈,在使用的场景上二者是有一定差异的。
更新 Matplotlib 折线图中的字体外观 用颜色名称绘制虚线和点状图 以随机坐标绘制所有可用标记 绘制一个非常简单的条形图 在 X 轴上绘制带有组数据的条形图 具有不同颜色条形的条形图 使用 Matplotlib...中的特定值改变条形图中每个条的颜色 在 Matplotlib 中绘制散点图 使用单个标签绘制散点图 用标记大小绘制散点图 在散点图中调整标记大小和颜色 在 Matplotlib 中应用样式表 自定义网格颜色和样式...在 Python Matplotlib 中绘制饼图 在 Matplotlib 饼图中为楔形设置边框 在 Python Matplotlib 中设置饼图的方向 在 Matplotlib 中绘制具有不同颜色主题的饼图...绘制直方图 在 Matplotlib 直方图中选择 bins 在 Matplotlib 中绘制没有条形的直方图 使用 Matplotlib 同时绘制两个直方图 绘制具有特定颜色、边缘颜色和线宽的直方图...用颜色图绘制直方图 更改直方图上特定条的颜色 箱线图 箱型图按列数据分组 更改箱线图中的箱体颜色 更改 Boxplot 标记样式、标记颜色和标记大小 用数据系列绘制水平箱线图 箱线图调整底部和左侧 使用
堆积的直方图 (Stacked histograms) 和重叠的密度曲线(overlapping densities) 可以对较小数量的分布进行更深入的比较,尽管堆积的直方图很难解释,最好避免。...另外,堆叠的条形图基本使用所有情况,如果是比例沿连续性变量进行变化的时候,使用堆叠的密度图是可以的。 ?...此外,我们可以根据数据为地图中的区域着色,从而显示不同区域中的数据值。这样的图被称为choropleth。...6 不确定性 误差棒用来表示某一类数据的可能的范围,我们可以在水平和垂直的方面来显示误差棒。 ? 为了获得比使用误差线或分级误差线更详细的可视化效果,我们可以可视化实际的置信。...对于平滑的线图,误差条可以使用置信范围来表示。 ? 文章推荐 《数据可视化基础》第三章:图形颜色如何选择 《数据可视化基础》第二章:坐标轴 《数据可视化基础》第一章:把数据放到图表上
分组条形图 当数据集具有需要在图形上可视化的子组时,将使用分组条形图。...亚组通过不同的颜色进行区分。...直方图是数值数据分布的近似表示。...双峰分布 在这个直方图中,有两组呈正态分布的直方图。它是在数据集中组合两个变量的结果。...下面列出了这些关联类型 正相关 在这些类型的图中,自变量的增加表示依赖于它的变量的增加。散点图可以具有高正相关或低正相关。 负相关关系 在这些类型的图中,自变量的增加表明依赖于它的变量减少。
在这篇文章中,我们将探讨如何使用直方图处理技术来校正图像中的颜色。 像往常一样,我们导入库,如numpy和matplotlib。...CDF,这显示了图像中颜色的良好分布——只是颜色集中在较低的强度值光谱上。...就像我们在灰度图像中所做的一样,我们还将每个通道的实际 CDF 转换为目标 CDF。 校正每个通道的直方图后,我们需要使用 numpy stack函数将这些通道堆叠在一起。...,我们可以看到转换后的图像颜色与原始图像的显着差异。...结论 我们已经探索了如何使用直方图处理来校正图像中的颜色,实现了各种分布函数,以了解它如何影响结果图像中的颜色分布。
作者 | 小白 来源 | 小白学视觉 在这篇文章中,我们将探讨如何使用直方图处理技术来校正图像中的颜色。 像往常一样,我们导入库,如numpy和matplotlib。...CDF,这显示了图像中颜色的良好分布——只是颜色集中在较低的强度值光谱上。...就像我们在灰度图像中所做的一样,我们还将每个通道的实际 CDF 转换为目标 CDF。 校正每个通道的直方图后,我们需要使用 numpy stack函数将这些通道堆叠在一起。...,我们可以看到转换后的图像颜色与原始图像的显着差异。...结论 我们已经探索了如何使用直方图处理来校正图像中的颜色,实现了各种分布函数,以了解它如何影响结果图像中的颜色分布。
x参数,则索引用于绘图的 x 值;或者,也可以传递与 DataFrame 具有相同元素数量的值数组 y:y的值。...y 标签 logx / logy : 在 x/y 轴上设置对数刻度 xticks / yticks : 设置轴上的刻度 color:为绘图定义颜色 colormap:可用于指定要绘制的多种颜色 hovertool...(上图中我们绘制的是2017年的数据),则无需对y赋值,结果会嵌套显示在一个图中: df_pie.plot_bokeh.pie( x="Partei", colormap=["blue"...直方图 在绘制直方图时,有不少参数可供选择: bins:确定用于直方图的 bin,如果 bins 是 int,则它定义给定范围内的等宽 bin 数量(默认为 10),如果 bins 是一个序列,它定义了...也可以传递一个整数,例如normed=100将导致带有百分比 y 轴的直方图(直方图值的总和 = 100),默认值:False cumulative:如果为 True,则显示累积直方图,默认值:False
height:柱状图的高度,即对应x位置上的数值,可以是一个数字序列。 width:柱状图的宽度,默认为0.8。 bottom:柱状图底部的位置,在堆叠柱状图中使用,表示下方柱状图的顶部位置。...(x, -y, '{}'.format(y), ha='center', va='top',fontsize=11,color='r') plt.show() (三)直方图 绘制直方图,反映数据分布。...‘bar’ 表示普通的柱形直方图,‘barstacked’ 表示堆叠的柱形直方图,‘step’ 表示阶梯状直方图,‘stepfilled’ 表示填充的阶梯状直方图。 align: 指定柱形的对齐方式。...plt.scatter()函数用于绘制散点图,其常用参数及解释如下: x:指定散点图中点的x轴数据,可以是一个数组或者列表。 y:指定散点图中点的y轴数据,可以是一个数组或者列表。...鉴于此,箱线图识别异常值的结果比较客观,因此在识别异常值方面具有一定的优越性。 3\sigma 原则又称为拉依达法则。
我们对于这张思维导图中的主要图例做一些解释: 散点图 散点图非常适合显示两个变量之间的关系,因为您可以直接看到数据的原始分布。您还可以通过如下图所示的对组进行颜色编码来查看不同数据组的这种关系。 ?...直方图 直方图对于查看(或真正发现)数据点的分布很有用。看看下面的柱状图,我们绘制了频率和智商的柱状图。我们可以清楚地看到向中心的浓度和中值是什么。我们也可以看到它遵循一个高斯分布。...有人可能会认为,你必须制作两个独立的直方图,把它们放在一起比较。但是,实际上有一个更好的方法:我们可以用不同的透明度覆盖直方图。看看下面的图。均匀分布的透明度设为0。5这样我们就能看到它的背后。...条形图 当您试图将类别很少(可能少于10个)的分类数据可视化时,条形图是最有效的。如果我们有太多的类别,那么图中的条形图就会非常混乱,很难理解。...它们非常适合分类数据,因为您可以根据条形图的大小;分类也很容易划分和颜色编码。我们将看到三种不同类型的条形图:常规的、分组的和堆叠的: ?
(具有很高的协方差),为了清楚地看出变量间的关系,最好使用折线图。...叠加直方图 在实现叠加直方图的代码中需要设置以下几个参数: 设置水平范围,以适应两种可变分布; 根据这个范围和期望的分组数量,计算并设置组距; 设置其中一个变量具有更高透明度,以便在一张图上显示两个分布...但在类别太多时,图中的柱体就会容易堆在一起,显得非常乱,对数据的理解造成困难。...使用不同颜色进行堆叠,对不同服务器之间进行比较,从而能查看并了解每天中哪台服务器的工作效率最高,负载具体为多少。...用Matplotlib库的函数boxplot()为y_data的每列值(每个列向量)生成一个箱形,然后设定箱线图中的各个参数就可以了。
之前的文章一图入门Matplotlib绘图中我们学习了matplotlib中常见图表元素的绘制方法,所有操作都通过可以调用plt的函数实现。...但是要在原来的基础上再堆起来一个,所以需要调用两次绘图函数,并且在第二次调用的时候通过bottom参数和left参数指定需要堆叠。例子如下: 垂直方向堆积 ? 水平方向堆积 ? 正负堆积 ?...堆积直方图 堆积直方图首先要准备好两组数据,并将两组数据进行“合并”成数组的形式,颜色和标签也要进行相应的合并。然后增加stacked=True参数,参考下面代码: 垂直方向堆积 ?...给wedgeprops传入一个字典参数,分别设置了宽度为0.4和边界颜色为白色。其中宽度是参考半径显示的,当设置为和半径一样时,就不会显示环形了。...此外还设置了textprops参数,控制了环形上的文字颜色。 内嵌环形饼图 将饼图进行嵌套,可以显示多组定性数据的比例分布。同前面的堆积图类似,内嵌的环形图也需要通过画两个环形来实现。
领取专属 10元无门槛券
手把手带您无忧上云