模型出错了,请稍后重试~
flask-sqlalchemy所作的操作只是把模型类转换为sql语句,然后通过数据库驱动访问mysql,在获取到结果后再把数据转换为模型对象
学习过web开发的人也许都知道,在web开发中最常用的数据库就是关系模型数据库,关系型数据库把所有的数据都存储在表中,表用来给应用的实体建模,表的列数是固定的,行数是可变的。查询的语句也是结构化的语言。
这是一种非常特殊的情况,其中 relationship()必须执行一个 INSERT 和一个第二个 UPDATE,以正确填充一行(反之亦然,为了删除而执行一个 UPDATE 和 DELETE,而不违反外键约束)。这两种用例是:
邻接列表模式是一种常见的关系模式,其中表包含对自身的外键引用,换句话说是自引用关系。这是在平面表中表示层次数据的最常见方法。其他方法包括嵌套集,有时称为“修改的先序”,以及材料路径。尽管在 SQL 查询中评估其流畅性时修改的先序具有吸引力,但邻接列表模型可能是满足大多数层次存储需求的最合适模式,原因是并发性、减少的复杂性,以及修改的先序对于能够完全加载子树到应用程序空间的应用程序几乎没有优势。
RDBMS(Relational Database Management System)即关系数据库管理系统,在开始之前,先了解下RDBMS的一些术语:
Step 2.Flask-SQLAlchemy 扩展配置: 描述: 需要使用Flask 的 app = Flask(__name__) 进行 SQLAlchemy 对象构建, 在开发过程中常常使用懒加载方法 init_app 方法进行扩展的加载使用;
即Object-Relationl Mapping,它的作用是在关系型数据库和对象之间做一个映射,这样我们在具体的操作数据库的时候,就不需要再去和复杂的SQL语句打交道,只要像平时操作对象一样操作它就可以了 。简单说,ORM是一个可以使我们更简单的操作数据库的框架。
当映射器配置在继承关系中时,SQLAlchemy 有能力以多态方式加载元素,这意味着单个查询可以返回多种类型的对象。
既然是应用程序,那么数据库就是必不可少的一部分。数据库按照一定规则保存程序数据,程序再发起查询取回所需的数据。Web 程序最常用基于关系模型的数据库,这种数据库也称为 SQL 数据库,因为它们使用结构化查询语言。不过最近几年文档数据库和键值对数据库成了流行的替代选择,这两种数据库合称 NoSQL数据库,比如 redis 等等。
其中,主键列指定了 PRIMARY KEY 约束,强制该列的值在表中唯一,并且使用 AUTO_INCREMENT 关键字,表示该列的值会自动递增生成。
本文实例讲述了python数据库操作mysql:pymysql、sqlalchemy常见用法。分享给大家供大家参考,具体如下:
版权声明:Copyright © https://blog.csdn.net/zzw19951261/article/details/81148625
flask默认提供模型操作,但是并没有提供ORM,所以一般开发的时候我们会采用flask-SQLAlchemy模块来实现ORM操作。 SQLAlchemy是一个关系型数据库框架,它提供了高层的 ORM 和底层的原生数据库的操作。flask-sqlalchemy 是一个简化了 SQLAlchemy 操作的flask扩展。 SQLAlchemy: https://www.sqlalchemy.org/
ORM 全称 Object Relational Mapping, 翻译过来叫对象关系映射。简单的说,ORM 将数据库中的表与面向对象语言中的类建立了一种对应关系。这样,我们要操作数据库,数据库中的表或者表中的一条记录就可以直接通过操作类或者类实例来完成。
转载请在文章开头附上原文链接地址:https://www.cnblogs.com/Sunzz/p/10979970.html
本节描述了relationship()函数及其用法的深入讨论。关于关系的介绍,请从使用 ORM 相关对象开始,参阅 SQLAlchemy 统一教程。
可以命令Table对象从数据库中已经存在的相应数据库架构对象中加载关于自身的信息。这个过程称为反射。在最简单的情况下,您只需要指定表名、一个MetaData对象和autoload_with参数:
relationship()的默认行为是根据配置的 加载策略 完全将集合内容加载到内存中,该加载策略控制何时以及如何从数据库加载这些内容。 相关集合可能不仅在访问时加载到内存中,或者急切地加载,而且在集合本身发生变化时以及在由工作单元系统删除所有者对象时也需要进行填充。
from flask import Flask, render_template, session, redirect, url_for, flash from flask_bootstrap import Bootstrap from flask_sqlalchemy import SQLAlchemy
SQLAlchemy是Python语言的一款流行的ORM(Object Relational Mapper)框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,即将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。
对象关系映射(英语:Object Relation Mapping,简称ORM,或O/RM,或O/R mapping),是一种程序技术,用于实现面向对象编程语言里不同类型系统的数据之间的转换。从效果上说,它其实是创建了一个可在编程语言里使用的“虚拟对象数据库”。
本页包含了由 Python 生成的Query构造的文档,多年来这是与 SQLAlchemy ORM 一起使用时的唯一 SQL 接口。从版本 2.0 开始,现在采用的是全新的工作方式,其中与 Core 相同的select()构造对 ORM 同样有效,为构建查询提供了一致的接口。
一、数据库操作 1,orm orm(object-Relation Mapping),对象-关系映射,主要实现模型对象到关系数据库数据的映射。 优点: - 只需要面向对象编程, 不需要面向数据库编写代码. - 对数据库的操作都转化成对类属性和方法的操作. - 不用编写各种数据库的`sql语句`. - 实现了数据模型与数据库的解耦, 屏蔽了不同数据库操作上的差异. - 不再需要关注当前项目使用的是哪种数据库。 - 通过简单的配置就可以轻松更换数据库, 而不需要修改代码. 缺点: - 相比较
MySQL mysql://username:password@hostname/database Postgres postgresql://username:password@hostname/database SQLite(Unix) sqlite:////absolute/path/to/database SQLite(Windows) sqlite:///c:/absolute/path/to/database
前言 表之间一对一关系 foreign key (外键) 父表类中通过 relationship() 方法来引用子表的类集合 在子表类中通过 foreign key (外键)引用父表类 from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import create_engine, Column, Integer, String, ForeignKey from sqlalchemy.orm import relati
mysql级别的外键,还不够ORM,必须拿到一个表的外键,然后通过这个外键再去另外一张表中查找,这样太麻烦了。SQLAlchemy提供了一个relationship,这个类可以定义属性,以后在访问相关联的表的时候就直接可以通过属性访问的方式就可以访问得到了。示例代码:
定义一个扩展到sqlalchemy.ext.declarative系统的系统,自动生成从数据库模式到映射类和关系,通常而不一定是一个反射的数据库模式。
https://flask-sqlalchemy.palletsprojects.com/en/master/quickstart/
Flask-SQLAlchemy是一个Flask扩展,简化了在Flask应用中使用SQLAlchemy的操作,SQLAlchemy是一个强大的关系型数据库框架,支持多种数据库后台。其安装方式与其他扩展一样使用pip安装即可:pip install flask-sqlalchemy。 在Flask-SQLAlchemy中,指定使用何种数据库是通过URL来实现的,各种主流数据库引擎使用URL格式如下:
MySQL是Web世界中使用最广泛的数据库服务器。SQLite的特点是轻量级、可嵌入,但不能承受高并发访问,适合桌面和移动应用。而MySQL是为服务器端设计的数据库,能承受高并发访问,同时占用的内存也远远大于SQLite。
先进行如下操作: from flask import Flask from flask.ext.sqlalchemy import SQLAlchemy app=Flask(__name__) db=SQLAlchemy(app) 一对多: class Parent(db.Model): id=db.Column(db.Integer,primary_key=True) name=db.Column(db.String(30),unique=True) children=db.re
在这里我们希望可以在Book类中存在这样一个属性:通过调用它可以获取对应的作者的记录,这类返回单个值的关系属性称为标量关系属性
几乎现在所有应用都会用到缓存技术,而在服务器端redis是很多实现缓存的首选技术。
映射器可以构造与任意关系单元(称为 selectables)相对应的类,除了普通表之外。例如,join() 函数创建了一个包含多个表的可选择单元,具有自己的复合主键,可以与 Table 相同的方式映射:
SQLAlchemy 是用Python编程语言开发的一个开源项目,它提供了SQL工具包和ORM对象关系映射工具,使用MIT许可证发行,SQLAlchemy 提供高效和高性能的数据库访问,实现了完整的企业级持久模型。
SQLAlchemy 的一个重要部分是在查询时提供对相关对象加载方式的广泛控制。所谓“相关对象”是指在映射器上使用relationship()配置的集合或标量关联。这种行为可以在映射器构造时使用relationship()函数的relationship.lazy参数进行配置,以及通过使用ORM 加载选项与Select构造函数一起使用。
在Django框架中内部已经提供ORM这样的框架,来实现对象关系映射,方便我们操作数据库。如果想在Flask中也达到这样效果,需要安装一个第三方来支持。 SQLAlchemy是一个关系型数据库框架,它提供了高层的ORM和底层的原生数据库的操作。flask-sqlalchemy是一个简化了SQLAlchemy操作的flask扩展。
每个用户维护一个“粉丝”用户列表和“关注”用户列表。不幸的是,关系型数据库没有列表类型的字段来保存它们,那么只能通过表的现有字段和他们之间的关系来实现。
零、数据库增删改查 1.增 # 增加数据 article1 = Article(title='aaa', content='bbb') # 以下这种方式也可以 # article1.content = 'ccc' # article1.title = 'ddd' # 保存数据 db.session.add(article1) # 提交事务 db.session.commit() 2.删 # 删除 article1 = Article.query.filter(article1.title == 'eee')
关系型数据库又称为关系型数据库管理系统(RDBMS),它是利用数据概念实现对数据处理的算法,达到对数据及其快速的增删改查操作。
在我们做web开发的时候,经常需要用到与数据库交互,因为我们的数据通常都是保存在数据库中的,如果有人需要访问,就必须与数据库访问,所以今天我们介绍一个Flask中与数据库交互的插件---Flask-Sqlalchemy。
使用SQLite SQLite是一种嵌入式数据库,它的数据库就是一个文件。由于SQLite本身是C写的,而且体积很小,所以,经常被集成到各种应用程序中,甚至在iOS和Android的App中都可以集成。 Python就内置了SQLite3,所以,在Python中使用SQLite,不需要安装任何东西,直接使用。 在使用SQLite前,我们先要搞清楚几个概念: 表是数据库中存放关系数据的集合,一个数据库里面通常都包含多个表,比如学生的表,班级的表,学校的表,等等。表和表之间通过外键关联。 要操作关系数据库,首先
前言 一个人有多个收件地址,这就是一对多关系 一对多(one-to-many)关系 关系使用 relationship() 函数表示。然而外键必须用类 sqlalchemy.schema.ForeignKey 来单独声明: class Person(db.Model): id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(50)) addresses = db.relationship('Ad
使用数据库元数据 - SQLAlchemy 的数据库元数据概念入门教程,位于 SQLAlchemy 统一教程中
在Flask-RESTful中,数据模型的设计和实现是非常重要的一步。一个好的数据模型设计可以使得应用程序更加清晰和易于维护。
SQLAlchemy SQL 工具包和对象关系映射器是一套全面的用于处理数据库和 Python 的工具集。它有几个不同的功能区域,可以单独使用或组合在一起。其主要组件如下图所示,组件依赖关系组织成层次结构:
通过前两次的努力,我们对环境有了增删查改以及部署和查看日志的能力。 现在已经处于将就可用的状态。但其实还差了很重要的东西,就是权限的管理。 因为不能说每个用户上来都能随便的重启和删除环境吧,太容易出事故了。所以我们想起码有最基本的隔离性。
简单的说,数据库(因为Database)就是一个存放数据的仓库,这个仓库是按照一定的数据结构(数据结构是指数据的组织形式或数据之间的联系)来组织、存储的,我们可以通过数据库提供的多种方式来管理数据库里的数据。 更简单形象的理解,数据库和我们生活中存放杂物的储物间仓库性质一样,区别只是存放的东西不同,杂物间存放实体的物件,而数据库里存放的是数据。
模型 这个术语表示程序使用的持久化实体。在 orm 中,模型一般是一个 Python 类,类的属性对应数据库表的类。 [当这个类的属性发生更改时,数据库也要迁移 ]
领取专属 10元无门槛券
手把手带您无忧上云