首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

具有未知节点对应关系的图相似性度量

是一种用于比较和评估两个图之间相似性的方法。在这种情况下,两个图的节点之间没有已知的对应关系,因此需要通过其他方式来度量它们的相似程度。

图相似性度量可以通过以下步骤进行:

  1. 图的表示:将两个图分别表示为邻接矩阵或邻接列表的形式。邻接矩阵表示法将图的节点和边表示为矩阵的元素,而邻接列表表示法则将每个节点及其相邻节点列表表示为键值对。
  2. 图的特征提取:从图中提取特征以便进行比较。这可以包括节点的度、节点的标签、节点的邻居等。常用的特征提取方法包括子图匹配、图核函数等。
  3. 相似性度量:使用合适的相似性度量方法来比较两个图的相似程度。常用的图相似性度量方法包括图编辑距离、子图同构比较、谱图论方法等。
  4. 应用场景:图相似性度量在许多领域中都有应用,包括社交网络分析、生物信息学、图像识别等。在社交网络分析中,可以使用图相似性度量来比较不同用户之间的兴趣相似度。在生物信息学中,可以使用图相似性度量来比较不同蛋白质结构之间的相似性。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云图数据库 TGraph:TGraph 是腾讯云推出的一种高性能、高可用的图数据库产品,适用于大规模图数据的存储和查询。它提供了灵活的图数据模型和强大的图查询能力,可以帮助用户快速构建和分析复杂的图结构数据。了解更多:TGraph 产品介绍
  • 腾讯云人工智能平台 AI Lab:AI Lab 是腾讯云推出的一站式人工智能开发平台,提供了丰富的人工智能算法和工具,包括图像识别、自然语言处理、机器学习等。用户可以在 AI Lab 上进行图像相似性度量等任务的开发和部署。了解更多:AI Lab 产品介绍

请注意,以上提到的腾讯云产品仅作为示例,其他云计算品牌商也可能提供类似的产品和服务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 浅析属性图在异常程序检测的应用

    大量的恶意软件/程序攻击给用户带来了极大的困扰。国内外的研究人员检测恶意程序的技术主要分为:基于程序结构、文件数据特征等恶意程序静态识别技术,基于程序运行时函数行为调用序列、函数参数信息等恶意程序动态识别技术[1]。目前,基于规则等检测技术以及基于机器学习等检测技术均存在相关问题。当未知恶意异常程序进行检测时,基于规则(YARA等)检测技术需要靠追加规则来实现,无法应对未知恶意异常程序的检测。此外,由于设备产生的数据量巨大,存在线索难以调查的问题,导致有效攻击线索淹没在背景数据中,基于机器学习检测技术通常具有较高的误报率和漏报率,难以快速识别。构建溯源图,能够作为威胁狩猎的关键资源,为威胁的识别、评估、关联提供丰富的上下文。《Provenance Mining:终端溯源数据挖掘与威胁狩猎》[2]一文,介绍了终端溯源数据(Provenance)以及溯源图(Provenance Graph)的概念,并介绍了如何在溯源数据完整有效采集的情况下,通过溯源图的后向追溯(backward-trace)和前向追溯(forward-trace),实现攻击事件的溯源与取证。为了检测未知恶意程序,相关研究人员[3]提出MatchGNet,通过数据驱动的方法进行检测,利用图神经网络来学习表示以及相似性度量,捕获不同实体之间的关系,利用相似性学习模型在未知程序与现有良性程序之间进行相似性评分,发现行为表示与良性程序有区分的未知恶意程序,最终,通过实验证明了有效性。随着异常程序检测技术的发展,攻击者躲避检测的方式也越来越多。本文将分析属性图在检测异常程序的应用。

    04

    AAAI2021 | 图神经网络的异质图结构学习

    近年来,异质图神经网络引起了广泛关注并应用在各种下游任务上。现有异质图神经网络模型通常依赖于原始的异质图结构并暗含着原始图结构是可靠的假设。然而,这种假设往往并不现实,异质图结构普遍存在噪声和缺失的问题。因此,如何为异质图神经网络学习一个合适的图结构而不是依赖于原始图结构是一个关键问题。为解决这一问题,本文首次研究了异质图结构学习(Heterogeneous Graph Structure Learning)问题,并提出了HGSL框架来联合学习适合分类的异质图结构和图神经网络参数。HGSL 通过挖掘特征相似性、特征与结构之间的交互以及异质图中的高阶语义结构来生成适合下游任务的异质图结构并联合学习 GNN参数。三个数据集上的实验结果表明,HGSL 的性能优于基线模型。

    02

    社交网络的度中心性与协调的神经活动有关

    趋同处理可能是促进社会联系的一个因素。我们使用神经成像和网络分析来调查大一学生在观看自然的视听刺激(即视频)时社交网络地位(通过度中心性测量)和神经相似性之间的联系。参与社交网络研究的学生有119名;其中63人参与了神经成像研究。我们发现,在与高级解读和社会认知相关的脑区(例如,默认模式网络),高度中心性的个体彼此间以及与同龄人之间有相似的神经反应,而低度中心性的个体表现出更多样化的反应。被试自我报告对刺激的享受程度和感兴趣程度遵循类似的模式,但这些数据并没有改变我们的主要结果。这些发现表明,对外部刺激的神经处理过程在高度中心性的个体中是相似的,但在低度中心性的个体中是特殊的。本文发表在Nature Communications杂志。

    02

    每日论文速递 | Embedding间的余弦相似度真的能反映相似性吗?

    摘要:余弦相似度是两个向量之间角度的余弦值,或者说是两个向量归一化之间的点积。一种流行的应用是通过将余弦相似度应用于学习到的低维特征嵌入来量化高维对象之间的语义相似性。在实践中,这可能比嵌入向量之间的非归一化点积效果更好,但有时也会更糟。为了深入了解这一经验观察结果,我们研究了由正则化线性模型推导出的嵌入,其中的闭式解法有助于分析。我们通过分析推导出余弦相似性如何产生任意的、因此毫无意义的 "相似性"。对于某些线性模型,相似性甚至不是唯一的,而对于其他模型,相似性则受正则化的隐性控制。我们讨论了线性模型之外的影响:在学习深度模型时,我们采用了不同的正则化组合;在计算所得到的嵌入的余弦相似度时,这些正则化组合会产生隐含的、意想不到的影响,使结果变得不透明,甚至可能是任意的。基于这些见解,我们提醒大家不要盲目使用余弦相似度,并概述了替代方法。

    01

    将公平注入AI:机器学习模型即使在不公平数据上训练也能产生公平输出

    来源:ScienceAI本文约1800字,建议阅读9分钟如何迫使深度度量学习模型首先学习好的特征? 如果使用不平衡的数据集训练机器学习模型,比如一个包含远多于肤色较浅的人的图像的数据集,则当模型部署在现实世界中时,该模型的预测存在严重风险。 但这只是问题的一部分。麻省理工学院的研究人员发现,在图像识别任务中流行的机器学习模型在对不平衡数据进行训练时实际上会编码偏差。即使使用最先进的公平性提升技术,甚至在使用平衡数据集重新训练模型时,模型中的这种偏差也无法在以后修复。 因此,研究人员想出了一种技术,将公平性

    02

    将公平注入AI:机器学习模型即使在不公平数据上训练也能产生公平输出

    大数据文摘转载自数据派THU 如果使用不平衡的数据集训练机器学习模型,比如一个包含远多于肤色较浅的人的图像的数据集,则当模型部署在现实世界中时,该模型的预测存在严重风险。 但这只是问题的一部分。麻省理工学院的研究人员发现,在图像识别任务中流行的机器学习模型在对不平衡数据进行训练时实际上会编码偏差。即使使用最先进的公平性提升技术,甚至在使用平衡数据集重新训练模型时,模型中的这种偏差也无法在以后修复。 因此,研究人员想出了一种技术,将公平性直接引入模型的内部表示本身。这使模型即使在不公平数据上进行训练也能产生公

    02

    Nat. Comput. Sci. | 基于拓扑表面和几何结构的3D分子生成方法

    今天为大家介绍的是来自侯廷军教授团队的一篇论文。计算机辅助药物发现的一个重大挑战是高效地从头设计药物。虽然近年来已经开始有一些针对特定结构的三维分子生成方法,但多数方法并没有完全学习到决定分子形态和结合复合物稳定性的原子间互动细节。因此,很多模型难以为各种治疗目标生成合理的分子。为了解决这个问题,作者提出了一个名为SurfGen的模型。这个模型设计分子的方式就像锁和钥匙原理一样。SurfGen由两个等变神经网络组成,它们分别捕捉口袋表面的拓扑互动和配体原子与表面节点之间的空间互动。SurfGen在多个基准测试中的表现优于其他方法,并且对口袋结构的高敏感性为解决由突变引起的药物耐受性问题提供了有效的解决方案。

    04

    初学数据挖掘——相似性度量(一)

    好久没有写这个了。也就是在去年到今年这个时间段里,同时决定好几件事情。第一:考研。第二:以后方向就是大数据或者是叫数据挖掘。这两件事当然是有联系的,第一件事就是考研考到北京,接着研究生的方向就是数据挖掘了吧。在一边准备考研的同时,还必须得一边准备着数据挖掘方面的知识。无奈本科前三年这方面接触得极少,只好利用现在的时间来恶补了。   不久前买了一边《集体智慧编程》,开篇即开始讲算法,或者是整本书都是在讲算法,而第一个算法就是——相似度度量。这个在现在用得非常多,在QQ音乐等音乐播放器上有类似“猜你喜欢”,

    08

    AI眼中的世界是什么样子?谷歌新研究找到了机器的视觉概念

    随着机器学习模型广泛用于制定重要决策,可解释性成为研究领域的重要主题。目前大多数解释方法通过特征重要性得分来提供解释,即识别每个输入中重要的特征。然而,如何系统性地总结和解释每个样本的特征重要性得分是很有难度的。近日,来自斯坦福大学和谷歌大脑的研究人员为基于概念的解释提出了一些原则和要求,它们超出了每个样本的特征(per-sample feature),而是在整个数据集上识别更高层次的人类可理解概念。研究者开发了一种可以自动提取视觉概念的新型算法 ACE。该研究进行了一系列系统性实验,表明 ACE 算法可发现人类可理解的概念,这些概念与神经网络的预测结果一致且非常重要。

    03

    J. Med. Chem. | 生物属性中对分子生成模型进行基准测试

    今天为大家介绍的是来自Liwei Liu,Tingjun Hou和Yu Kang团队的一篇论文。基于深度学习的分子生成模型因其生成具有新颖结构和理想理化属性的分子的能力而受到越来越多的关注。然而,这些模型的评估,特别是在生物学背景下的评估,仍然不足。为了解决现有度量标准的局限性并模拟实际应用场景,作者构建了RediscMol基准测试,它包括从5个激酶和3个GPCR数据集中提取的活性分子。作者引入了一组重新发现和相似性相关的度量标准,以评估8个代表性的生成模型的性能。基于RediscMol基准测试的发现与之前的评估结果不同。CharRNN、VAE和Reinvent在重现已知活性分子方面表现出更强的能力,而RNNAttn、TransVAE和GraphAF尽管在常用的分布学习度量标准上表现突出,但在这方面存在困难。作者的评估框架可能为在现实世界药物设计场景中推进生成模型提供宝贵的指导。

    01

    AI眼中的世界是什么样子?谷歌新研究找到了机器的视觉概念

    随着机器学习模型广泛用于制定重要决策,可解释性成为研究领域的重要主题。目前大多数解释方法通过特征重要性得分来提供解释,即识别每个输入中重要的特征。然而,如何系统性地总结和解释每个样本的特征重要性得分是很有难度的。近日,来自斯坦福大学和谷歌大脑的研究人员为基于概念的解释提出了一些原则和要求,它们超出了每个样本的特征(per-sample feature),而是在整个数据集上识别更高层次的人类可理解概念。研究者开发了一种可以自动提取视觉概念的新型算法 ACE。该研究进行了一系列系统性实验,表明 ACE 算法可发现人类可理解的概念,这些概念与神经网络的预测结果一致且非常重要。

    01

    【翻译】HyNet: Learning Local Descriptor with Hybrid Similarity Measure and Triplet Loss

    最近的研究表明,局部描述符学习得益于L2归一化的使用,然而,文献中缺乏对这种效应的深入分析。在本文中,我们研究了L2归一化如何影响训练期间的反向传播描述符梯度。根据我们的观察,我们提出了一个新的局部描述符HyNet,它可以在匹配方面带来最先进的结果。HyNet引入了一种混合相似性度量,用于度量三态边际损失,一个正则化项约束描述符范数,以及一种新的网络体系结构,该体系结构对所有中间特征映射和输出描述符执行L2正则化。在包括补丁匹配、验证和检索在内的标准基准上,HyNet大大超过了以前的方法,并且在3D重建任务上优于完整的端到端方法。代码和模型可在https://github.com/yuruntian/HyNet上找到。

    02
    领券