首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Power Query清洗标题行错位的数据

案例来源于一位同学的一种设备,去敏后格式如下:指标涉及100多个,每次测量的指标不一样,也就是说,设备除了“数据编号”外,其他标题名称错位存放于同一工作表中。...经Power Query处理后,结果如下: 处理的原理是:依据Power Query按照列名识别数据的特点,将每个数据编号分组,拆分为独立的表格,然后独立小表格提升标题后合并。实施过程如下。...筛选列1的数据编号内容,界面只留下了所有标题,为这个筛选后的表再建一个索引,命名为“分组”,后期表格将按照此分组拆分。...Power Query的每一步操作生成的步骤可以看作一个表,不同的表之间可以相互调用。前面已经有了四个步骤对应四个表。现在的问题是,最后的步骤使得界面停留在仅剩标题的状态,数据被筛选掉了。...然后提升标题,展开自定义列后即可得到文章开头的清洗结果。

1.2K20

如何用4行 R 语句,快速探索你的数据集?

你需要了解缺失数据的多少,以及它们可能对后续分析造成的影响。 如果某个变量的缺失数据少,干脆把含有缺失值的行(观测)扔掉就算了,免得影响分析精确程度。 但如果缺失数据太多,都扔掉就不可行了。...即便是 R 这样专门给统计工作者使用的软件,从前也需要调用若干条命令(一般跟特征变量个数成正比),才能完成。 我最近发现了一款 R 包,可以非常方便地进行数据集总结概览。...其实前3行语句,都是准备工作。真正总结概览功能,只需第4条。 第一行: tidyverse 是一个非常重要的库。可以说它改进了 R 语言处理数据的生态环境。...这个数据集,来自于 Hadley Wickham 的 github 项目,名称叫做 nycflights13 。 ?...探索 本文介绍的 summarytools 包的功能,并不只是对数据集做总体总结概览。 它还可以进行变量之间的关系展示。例如你想知道3大机场起飞的航班,对应航空公司的比例是否有差别。

90110
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    多个数据集的整合分析

    今天是平平无奇的整合分析,是数据挖掘中经常用到的一部分~ 参考文献在这里⬇ A robust 6-mRNA signature for prognosis prediction of pancreatic...software.DEGs were defined with P 1 as the cut-off criteria: 作者是直接下载cel格式的原始数据...,然后用RMA函数获取表达矩阵,分别对三个数据集进行了差异分析,然后对差异分析取交集作了后续的分析。...我们也试试看吧—— # GSE15471, GSE28735 and GSE62452 rm(list = ls()) ##全局设置 ##下载的数据大小>131072字节,所以需要调整默认连接缓存,...source("step2_check.R") source("step4_DEG.R") source("step5_degVisualise.R") } 完事了呢,我们来比较一下我们的差异分析和文章的差异分析结果

    1.1K10

    R语言指定列取交集然后合并多个数据集的简便方法

    我的思路是 先把5份数据的基因名取交集 用基因名给每份数据做行名 根据取交集的结果来提取数据 最后合并数据集 那期内容有人留言了简便方法,很短的代码就实现了这个目的。...我将代码记录在这篇推文里 因为5份数据集以csv格式存储,首先就是获得存储路径下所有的csv格式文件的文件名,用到的命令是 files<-dir(path = "example_data/merge_data...) df<-map(files,read.csv) class(df) df是一个列表,5份数据分别以数据框的格式存储在其中 最后是合并数据 直接一行命令搞定 df1<-reduce(df,inner_join...) df1就是我们想要的结果 达成这个目的最终总共才用到了4行代码,太方便了。...之前和一位同学讨论的时候他也提到了tidyverse整理数据,但是自己平时用到的数据格式还算整齐,基本上用数据框的一些基本操作就可以达到目的了。

    7.1K11

    如何提取 R 语言内置数据集和著名 R 包的数据集

    大家好,今天我们来聊一聊在 R 语言中如何提取内置数据集,以及如何使用著名 R 包中的数据集。相信很多同学在学习 R 语言时,都会遇到需要用数据集来做练习或者分析的情况。...我们今天就一一讲解,带你走进 R 语言的数据世界! 1. R 语言自带的数据集 R 自带的数据集其实非常多,而且这些数据集涵盖了各种领域,比如统计学、医学、社会科学等。...提取著名 R 包中的数据集 除了 R 自带的数据集,很多常用的 R 包里也内置了数据集。对于生物或医学相关的研究,很多包会提供领域内的数据集,供用户进行模型验证或方法测试。...如何找到更多的数据集?——Rdatasets 如果你觉得 R 自带的数据集或者某个 R 包里的数据集不够用,别担心,还有一个专门存储 R 数据集的仓库,叫做 Rdatasets。...Rdatasets 是一个为 R 用户收集、整理数据集的仓库,它包含了数百个常见的数据集,涵盖了生物学、经济学、医学等多个领域。

    19310

    CellChat 三部曲3:具有不同细胞类型成分的多个数据集的细胞通讯比较分析

    分享是一种态度 此教程显示了如何将 CellChat 应用于具有不同细胞类型成分的多个数据集的比较分析。几乎所有的CellChat功能都可以应用。...笔记要点 加载所需的包 第一部分:比较分析具有略有不同细胞类型成分的多个数据集 第二部分:对具有截然不同的细胞类型成分的多个数据集的比较分析 加载所需的包 library(CellChat) library...(ggplot2) library(patchwork) library(igraph) 第一部分:比较分析具有略有不同细胞类型成分的多个数据集 对于具有稍微不同的细胞类型...(组)组成的数据集,CellChat 可以使用函数liftCellChat将细胞组提升到所有数据集的相同细胞标记,然后执行比较分析,作为对具有相同细胞类型成分的数据集的联合分析。...第二部分:对具有截然不同的细胞类型成分的多个数据集的比较分析 CellChat 可用于比较来自截然不同的生物背景的两个 scRNA-seq 数据集之间的细胞-细胞通信模式。

    7.5K11

    R语言新神器visdat包(一行代码看穿整个数据集)

    ()可视化数据中各个数据的类别 示例 (1)使用vis_dat()函数 通过经典的airquality数据集(其中包含有关1973年5月至9月纽约每日空气质量测量的信息)展示vis_dat()的功能。...上图告诉我们:R将此数据集读取为数值型或者整数型,并在Ozone和Solar.R中存在一些缺失的数据。缺少的数据由灰色表示。...通过图片的输出结果我们可以看出, Ozone; Solar.R;Temp ;Month Day这几列为数字型,而Wind这一列为整数型。...vis_cor是基于基础R中的cor函数,并且可以指示要计算哪个相关系数: “pearson”(默认),“kendall”或“spearman”之一。...当在超过1000行的数据上使用它时,请考虑这一点。

    1.4K40

    用于训练具有跨数据集弱监督的语义分段CNN的数据选择

    作者:Panagiotis Meletis,Rob Romijnders,Gijs Dubbelman 摘要:训练用于具有强(每像素)和弱(每边界框)监督的语义分割的卷积网络需要大量弱标记数据。...我们提出了两种在弱监督下选择最相关数据的方法。 第一种方法设计用于在不需要标签的情况下找到视觉上相似的图像,并且基于使用高斯混合模型(GMM)建模图像表示。...作为GMM建模的副产品,我们提供了有关表征数据生成分布的有用见解。 第二种方法旨在寻找具有高对象多样性的图像,并且仅需要边界框标签。...这两种方法都是在自动驾驶的背景下开发的,并且在Cityscapes和Open Images数据集上进行实验。...原文标题:Data Selection for training Semantic Segmentation CNNs with cross-dataset weak supervision 原文链接:

    74820

    GEO数据库挖掘之多个芯片数据集的合并

    下面是( GEO数据挖掘 )直播配套笔记 举例:GSE83521和GSE89143数据合并 1.下载数据 rm(list = ls()) library(GEOquery) library(stringr...[,match(rownames(pd2),colnames(exp2))] #(3)提取芯片平台编号 gpl <- eSet2[[1]]@annotation #(4)合并表达矩阵 # exp2的第三个样本有些异常...) Group = factor(Group,levels = c("Normal","Tumour")) save(gse,Group,exp,gpl,file = "exp.Rdata") 两个数据集样本的情况...合并后的数据 2.针对不同数据集数据的差异,需要处理批次效应 2.1 使用limma包里的removeBatchEffect()函数 rm(list = ls()) load("exp.Rdata...removeBatchEffect() batch <- c(rep("A",12),rep("B",5)) exp2 <- removeBatchEffect(exp, batch) par(mfrow=c(1,2)) # 展示的图片为一行两列

    3.5K12

    R-rbind.fill|列数不一致的多个数据集“智能”合并,Get!

    Q:多个数据集,列数不一致,列名也不一致,如何按行合并,然后保留全部文件的变量并集呢? A:使用 rbind.fill 函数试试!...数据集按列合并时,可以根据merge 或者 dplyr函数包的merge系列函数决定连接方式,达到数据合并的需求。...但是按行合并时常用的rbind,限制条件有点多,发现plyr包的rbind.fill 函数能比较好的解决这个问题。...data1,data2,data3 列数不一致,列名也不一致,现在需要按行合并,可能的问题: 1)rbind: 是根据行进行合并(行叠加)但是要求rbind(a, c)中矩阵a、c的列数必需相等。...2)列数相同的时候,变量名不一致也会合并,导致出错 二 rbind.fill“智能”合并 列数不一致多个数据集,需要按行合并,尝试使用plyr包rbind.fill函数 library(plyr) rbind.fill

    2.9K40

    R语言练习的时候那些内置数据集

    R语言提供了许多内置的数据集,这些数据集可以在学习和练习时使用,帮助你熟悉R的数据分析和可视化操作。...基因组浏览图(Genome Browser Plot): 用于显示基因组上的特征,如基因、外显子、内含子等。 Venn图: 用于显示多个数据集之间的共有和独有元素,例如基因集的重叠。...瀑布图(Waterfall Plot): 用于显示多个数据点之间的增减关系,常用于基因突变的分析。...是否有专门的生物信息学数据集呢 R语言中有一些专门用于生物信息学分析的R包体系,可以在生物信息学领域进行练习和研究。...以下是一些常用的生物信息学R包体系的示例: Bioconductor数据集: Bioconductor是一个R语言的生物信息学软件包库,提供了许多生物学分析所需的数据集。

    1.4K10

    hive sql(五)—— 按照时间轴顺序, 发生了状态变化的数据行

    需求 一个日志表中记录了某个商户费率变化状态的所有信息, 现在有个需求,要取出按照时间轴顺序, 发生了状态变化的数据行; 建表 create table shop( id string,...rate string, rq date ); 数据 insert into shop values (100,0.1,'2021-03-02'), (100,0.1,'2021-02-02')...0.3 Time taken: 17.429 seconds, Fetched: 8 row(s) 分析 1、某个商户、时间顺序关键词,就是对商户开窗,然后按照时间排序 2、这里需要比较当前行和上一行,...所以需要上一行的数据取出放在当前行 3、使用lag函数取出上一行,在进行比较即可 扩展 1、这里有一个需要考虑去重的问题,如果一个商户之前是0.1的费率,第一次改动时变成了0.2,之后又改回了0.1,那么...0.2和0.1应该算两次改动,因为这里需求是发生了状态变化的数据行,要根据实际情况是否去重 2、初始状态是没有上一行的,这里默认值给了0,初始状态算不算状态变化,这个也要约定好,如果不算则需要加一个条件判断

    1.1K20

    R 数据整理(四:R 的格式化输出与自带的数据集)

    比如: > class(format(1.0)) [1] "character" 但不同于as.character(),format 函数可以控制输出的精度和宽度: nsmall 控制非科学记数法显示时小数点后的至少要有的位数...第一个自变量是 C 语言格式的输出格式字符串,其 中%d 表示输出整数,%f 表示输出实数,%02d 表示输出宽度为 2、不够左填 0 的整数,%6.2f 表示输出宽度为 6、 宽度不足时左填空格、含两位小数的实数....jpg" "tour010.jpg" "tour015.jpg" "tour100.jpg" 我们还可以传入多个向量,实现多个数据的格式化处理: sprintf("%1dx%1d=%2d", 1:5...自带数据集 无论是R 的base 包,还是像tidyverse 套件中的数据处理相关的R 包,都提供了很多数据集,便于我们的实战。...其实查看它们也很方便:data() 就搞定了,其会返回一个列表,其中result 元素中包含了这些数据集信息的数据框: > colnames(data()$results) [1] "Package"

    1.2K40

    R语言之处理大型数据集的策略

    在实际的问题中,数据分析者面对的可能是有几十万条记录、几百个变量的数据集。处理这种大型的数据集需要消耗计算机比较大的内存空间,所以尽可能使用 64 位的操作系统和内存比较大的设备。...不过,这个包的操作方式与 R 中其他包相差较大,需要投入一定的时间学习。 3. 模拟一个大型数据集 为了便于说明,下面模拟一个大型数据集,该数据集包含 50000 条记录、200 个变量。...,前者中的参数 size 用于指定行的个数,而后者中的参数 size 用于指定占所有行的比例。...需要说明的是,上面讨论的处理大型数据集的策略只适用于处理 GB 级的数据集。不论用哪种工具,处理 TB 和 PB 级的数据集都是一种挑战。...R 中有几个包可以用于处理 TB 级数据集,例如 RHIPE、RHadoop 和 RevoScaleR 等。

    34720

    R语言实现GEO多数据集的分析

    大家对GEO的数据应该都很熟悉,那么如何把GEO中多个研究进行合并分析成为一个比较棘手的问题,今天给大家介绍这么一个包可以实现多研究的合并分析。...其中主要的参数: Data 构成为K个G*M的表达矩阵。K为研究数量,G行基因,M列样本。 Clin.data 构成为K个M*P的矩阵,K为研究数量,M行样本,P列属性。...Data.type 为数据的类型"continuous"or "discrete".,RPKM/FPKM/TPM是连续的"continuous";read counts 为"discrete"。...Covariate 此参数可以设置临床数据作为DE的协变量 Ind.method 指的是response和表达矩阵之间的关系的分析方法。"...Meta.method 主要用到的合并研究的一些方法,具体的选用哪个方法要看研究的数据了。

    2.4K20

    多个单细胞数据集整合的另外一个选择conos

    但是现在基本上大家的单细胞转录组项目不太可能是单个样品啦,所以一定会触及到多个样品整合的问题,整合是为了尽可能的去除批次等不需要的差异但是尽可能的保留生物学差异,是一个两难问题,所以关于它的算法基本上都是发表在...但是如果你选择:单细胞降维聚类分群的另外一个工具选择Pagoda2,其实也有一个配套的单细胞数据集整合的算法选择conos,让我们来一起看看吧。...', repos='https://kharchenkolab.github.io/drat/', type='source') # install.packages("conos") 然后对测试数据集构建...实例数据演示conos的整合 前面的包的安装和加载是一样的,这个时候不选择示例数据,而是 读取pbmc3k和5k数据集 : ## 2.1 读取pbmc3k和5k数据集 ---- library(conosPanel...pbmc3k和5k数据集 ,需要的两个文件 在我自己的电脑,不过如果你看完了以前的单细胞系列教程,应该是很容易自己去制作它。

    1.6K30
    领券