首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python数据科学系列:pandas入门详细教程

、数据分析和数据可视化全套流程操作 pandas主要面向数据处理与分析,主要具有以下功能特色: 按索引匹配的广播机制,这里的广播机制与numpy广播机制还有很大不同 便捷的数据读写操作,相比于numpy...切片形式访问时按行进行查询,又区分数字切片和标签切片两种情况:当输入数字索引切片时,类似于普通列表切片;当输入标签切片时,执行范围查询(即无需切片首末值存在于标签列中),包含两端标签结果,无匹配行时返回为空...与[ ]访问类似,loc按标签访问时也是执行范围查询,包含两端结果 at/iat,loc和iloc的特殊形式,不支持切片访问,仅可以用单个标签值或单个索引值进行访问,一般返回标量结果,除非标签值存在重复...isin/notin,条件范围查询,即根据特定列值是否存在于指定列表返回相应的结果 where,仍然是执行条件查询,但会返回全部结果,只是将不满足匹配条件的结果赋值为NaN或其他指定值,可用于筛选或屏蔽值...;sort_values是按值排序,如果是dataframe对象,也可通过axis参数设置排序方向是行还是列,同时根据by参数传入指定的行或者列,可传入多行或多列并分别设置升序降序参数,非常灵活。

15K20

一文介绍Pandas中的9种数据访问方式

导读 Pandas之于日常数据分析工作的重要地位不言而喻,而灵活的数据访问则是其中的一个重要环节。本文旨在讲清Pandas中的9种数据访问方式,包括范围读取和条件查询等。 ?..."访问 切片形式访问时按行进行查询,又区分数字切片和标签切片两种情况:当输入数字索引切片时,类似于普通列表切片;当输入标签切片时,执行范围查询(即无需切片首末值存在于标签列中),包含两端标签结果,无匹配行时返回为空...切片类型与索引列类型不一致时,引发报错 2. loc/iloc,可能是除[]之外最为常用的两种数据访问方法,其中loc按标签值(列名和行索引取值)访问、iloc按数字索引访问,均支持单值访问或切片查询...4. isin,条件范围查询,一般是对某一列判断其取值是否在某个可迭代的集合中。即根据特定列值是否存在于指定列表返回相应的结果。 5. where,妥妥的Pandas仿照SQL中实现的算子命名。...在DataFrame中,filter是用来读取特定的行或列,并支持三种形式的筛选:固定列名(items)、正则表达式(regex)以及模糊查询(like),并通过axis参数来控制是行方向或列方向的查询

3.8K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    数据导入与预处理-课程总结-01~03章

    完整性:指信息具有一个实体描述的所有必需的部分,在传统关系型数据库中,完整性通常与空值(NULL)有关。一般包括记录的缺失和记录属性的缺失。...这些流程的顺序不是完全固定的,往往是相互交叉的。 初始数据获取是预处理的第一步,该步骤主要负责从文件、数据库、网页等众多渠道中获取数据,以得到预处理的初始数据,为后续的处理工作做好数据准备。...DataFrame类对象的行索引位于最左侧一列,列索引位于最上面一行,且每个列索引对应着一列数据。DataFrame类对象其实可以视为若干个公用行索引的Series类对象的组合。...-1)选择行 # df.iloc[] - 按照整数位置(从轴的0到length-1)选择行 # 类似list的索引,其顺序就是dataframe的整数位置,从0开始计 df = pd.DataFrame...使用[]访问数据 变量[索引] 需要说明的是,若变量的值是一个Series类对象,则会根据索引获取该对象中对应的单个数据;若变量的值是一个DataFrame类对象,在使用“[索引]”访问数据时会将索引视为列索引

    3.1K20

    Java 后台开发面试题分享八

    而 InnoDB 引擎则在索引中保留了未压缩的值,InnoDB 是通过主键值来索引到数据行的。这两种方式各有优缺点。...最终结果为存储引擎没有查找到期望的值,或者成功到达叶子页。...下面这几种类型查询使用前面说的索引是很有用的: 1、匹配全值,一个全键值匹配索引中所有列的指定值,也就是根据索引列的值来匹配。 2、匹配最左前缀,只根据索引最左列值查找。...3、匹配某一列的前缀,即根据索引列的值的前缀查找,这种情况只能使用到索引第一列的情景。 4、匹配值区间,即根据索引某一列值范围查找,也只能是索引列第一列。...5、匹配一部分精确值,一部分范围值,比如我索引有两列 A、B,可以根据 A 列的精确值,B 列的范围值进行查询。 6、仅索引查询。

    88720

    Elasticsearch:如何轻松安全地对实时 Elasticsearch 索引 reindex 你的数据

    通过这样做,它使用称为动态映射的功能为这个新索引创建默认映射。这就是你需要索引模板的原因! 此功能允许你定义 Elasticsearch 自动创建的索引将获得的所有属性,包括其设置和映射。...* 匹配的索引时,它将应用该模板(请参阅完整文档)。...将数据从 production_logs 重新索引到 production_logs_1POST _reindex?...然后,你可以将所有数据从 production_logs 重新索引到名为 production_logs_orig 的新索引索引。POST _reindex?...作为最终结果,我们现在有一个索引别名指向两个具有预期映射的索引 有可能再次从 production_logs_orig 重新索引到 production_logs_1 最后只有一个索引。

    11010

    合并Pandas的DataFrame方法汇总

    使用how='outer' 合并在键上匹配的DataFrames,但也包括丢失或不匹配的值。...对象([df1,df2,…])的列表 axis:定义连接的方向,0 表示0轴方向,即以行为单位链接;1 1轴方向,即以列为单位连接 join 的值可以是 inner (交集)或 outer(并集) ignore_index...如果设置为 True ,它将忽略原始值并按顺序重新创建索引值 keys:用于设置多级索引,可以将它看作附加在DataFrame左外侧的索引的另一个层级的索引,它可以帮助我们在值不唯一时区分索引 用与 df2...现在,df_row_concat具有唯一的索引值: user_id image_url 0 id001 http://example.com...concat()可以在水平和竖直(0轴和1轴)方向上合并,要按列(即在1轴方向上合并)将两个DataFrames连接在一起,要将axis值从默认值0更改为1: df_column_concat = pd.concat

    5.7K10

    直观地解释和可视化每个复杂的DataFrame操作

    每种方法都将包括说明,可视化,代码以及记住它的技巧。 Pivot 透视表将创建一个新的“透视表”,该透视表将数据中的现有列投影为新表的元素,包括索引,列和值。...初始DataFrame中将成为索引的列,并且这些列显示为唯一值,而这两列的组合将显示为值。这意味着Pivot无法处理重复的值。 ? 旋转名为df 的DataFrame的代码 如下: ?...为了访问狗的身高值,只需两次调用基于索引的检索,例如 df.loc ['dog']。loc ['height']。 要记住:从外观上看,堆栈采用表的二维性并将列堆栈为多级索引。...Unstack 取消堆叠将获取多索引DataFrame并对其进行堆叠,将指定级别的索引转换为具有相应值的新DataFrame的列。在表上调用堆栈后再调用堆栈不会更改该堆栈(原因是存在“ 0 ”)。...例如,如果 df1 具有3个键foo 值, 而 df2 具有2个相同键的值,则 在最终DataFrame中将有6个条目,其中 leftkey = foo 和 rightkey = foo。 ?

    13.3K20

    Python数据分析常用模块的介绍与使用

    DataFrame由多个Series组成,DataFrame可以类比为二维数组或者矩阵,但与之不同的是,DataFrame必须同时具有行索引和列索引,每列可以是不同的数据类型(整数、浮点数、字符串等)。...行 describe() 返回所有数值列的统计信息,即返回DataFrame各列的统计摘要信息,如平均值、最大值、最小值等 max(axis=0) /min(axis = 0) 默认列方向各列的最大/最小值...,当axis的值设置为1时,获得各行的最大/最小值 mean(axis = 0) / median( axis = 0) 默认获得列方向各列的平均/中位数,当axis的值设置为1时,获得各行的平均值/中位数...示例 创建DataFrame的语句如下: index和columes参数可以指定,当不指定时,从0开始。通常情况下,列索引都会给定,这样每一列数据的属性可以由列索引描述。...调用DataFrame对象的info方法,可以获得其信息概述,包括行索引,列索引,非空数据个数和数据类型信息。

    32010

    Mysql专栏 - mysql索引(二)

    概述 聚簇索引和二级索引以及三级索引的逻辑和维护细节 多级索引是如何进行数据查找的,本文介绍了如下的查找方式 等值匹配 最左原则 最左前缀匹配 范围查找 等值匹配和范围匹配 最后简述排序以及回表的危害,...所以其实你的索引扫描也是从name字段对应的索引树通过根节点遍历查找。 什么是回表操作?...,包括页内的排序规则,页之间的排序规则,B+树索引的搜索规则,都是一样的。...最左匹配规则 最左匹配规则是指在索引查找的时候,不一定要查找where语句的方式,也可以按照联合索引的的最左顺序匹配,但是不能跳过索引进行查找,比如从顺序建立索引的反方向进行查找。...按照同样的道理,如果分页也按照索引最左匹配的原则,同样可以作为排序使用。但是现实情况可能和我们预想的完全不同,但是实际上有一定的补救措施,后续的文章内容会进行扩展介绍。

    57530

    数据导入与预处理-第6章-02数据变换

    2.1 数据变换方法(6.2.1 ) 数据变换的常见处理方式包括: 数据标准化处理 数据离散化处理 数据泛化处理 在对数据进行分析或挖掘之前,数据必须满足一定的条件: 比如方差分析时要求数据具有正态性...等宽法 等宽法将属性的值域从最小值到最大值划分成具有相同宽度的区间,具体划分多少个区间由数据本身的特点决定,或者由具有业务经验的用户指定 等频法 等频法将相同数量的值划分到每个区间,保证每个区间的数量基本一致...基于列值重塑数据(生成一个“透视”表)。使用来自指定索引/列的唯一值来形成结果DataFrame的轴。此函数不支持数据聚合,多个值将导致列中的MultiIndex。...,将出售日期一列的唯一值变换成行索引。...axis:表示分组操作的轴编号,可以是0或1。该参数的默认值为0,代表沿列方向操作。 level:表示标签索引所在的级别,默认为None。

    19.3K20

    数据导入与预处理-课程总结-04~06章

    header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引,默认为0,即第一行数据作为列索引。...header:表示指定文件中的哪一行数据作为DataFrame类对象的列索引。 names:表示DataFrame类对象的列索引列表。...; 空心圆点表示异常值,该值的范围通常为小于Q1 – 1.5IQR或大于Q3 + 1.5IQR 为了能够直观地从箱形图中查看异常值,pandas中提供了两个绘制箱形图的函数:plot()和boxplot...axis:表示分组操作的轴编号,可以是0或1。该参数的默认值为0,代表沿列方向操作。 level:表示标签索引所在的级别,默认为None。...# 重塑df,使之具有两层行索引 # 原来的列数据one, two, three就到了行上来了,形成多层索引。

    13.1K10

    Pandas 学习手册中文第二版:1~5

    序列与 NumPy 数组相似,但是它的不同之处在于具有索引,该索引允许对项目进行更丰富的查找,而不仅仅是从零开始的数组索引值。 以下从 Python 列表创建一个序列。: 输出包括两列信息。...这些列是数据帧中包含的新Series对象,具有从原始Series对象复制的值。 可以使用带有列名或列名列表的数组索引器[]访问DataFrame对象中的列。...当不存在这种类型的索引时,这是与本书先前版本相比的 Pandas 更改。 RangeIndex对象代表具有指定step的从start到stop值的值范围。...如果将整数传递给[],并且索引具有整数值,则通过将传入的值与整数标签的值进行匹配来执行查找。...访问数据帧内的数据 数据帧由行和列组成,并具有从特定行和列中选择数据的结构。 这些选择使用与Series相同的运算符,包括[],.loc[]和.iloc[]。

    8.3K10

    最全面的Pandas的教程!没有之一!

    ,包括从基础的python脚本到web开发、爬虫、django、人工智能、机器学习等。...当然,这有的时候打击范围太大了。于是我们可以选择只对某些特定的行或者列进行填充。比如只对 'A' 列进行操作,在空值处填入该列的平均值: ?...'Company' 列进行分组,并用 .mean() 求每组的平均值: 首先,初始化一个DataFrame: ?...因为我们没有指定堆叠的方向,Pandas 默认按行的方向堆叠,把每个表的索引按顺序叠加。 如果你想要按列的方向堆叠,那你需要传入 axis=1 参数: ? 注意,这里出现了一大堆空值。...比如,我们可以用这样的 lambda 表达式代替上面 In[47] 里的函数定义: ? 获取 DataFrame 的属性 DataFrame 的属性包括列和索引的名字。

    26K64

    Pandas图鉴(三):DataFrames

    read_csv最酷的地方在于它能自动检测到很多东西,包括: 列的名称和类型、 布尔的表示法、 缺失值的表示,等等。...如果DataFrames的列不完全匹配(不同的顺序在这里不算),Pandas可以采取列的交集(kind='inner',默认)或插入NaNs来标记缺失的值(kind='outer'): 水平stacking...注意:要小心,如果第二个表有重复的索引值,你会在结果中出现重复的索引值,即使左表的索引是唯一的 有时,连接的DataFrame有相同名称的列。...与普通模式相比,这种模式有些限制: 它没有提供一个解决重复列的方法; 它只适用于1:1的关系(索引到索引的连接)。 因此,多个1:n的关系应该被逐一连接。'...一列范围内的用户函数唯一可以访问的是索引,这在某些情况下是很方便的。例如,那一天,香蕉以50%的折扣出售,这可以从下面看到: 为了从自定义函数中访问group by列的值,它被事先包含在索引中。

    44420

    Python数学建模算法与应用 - 常用Python命令及程序注解

    参数axis可以指定的值包括以下几种情况: 整数:可以使用0、1、2、...来指定对应的轴。其中,0表示沿着第一个轴(行)的方向进行操作,1表示沿着第二个轴(列)的方向进行操作,以此类推。...数组a由4个元素组成,每个元素的值都为1。数组b由从2开始、步长为2、不包括10的整数构成。...# 创建具有默认索引和列标签的DataFrame a2 = pd.DataFrame(np.random.rand(24, 4)) 这里使用np.random.rand()函数生成一个24行4列的随机数数组...其中,a1具有指定的日期索引和列标签,而a2具有默认的整数索引和列标签。这些DataFrame对象包含了随机生成的数据,可用于进行数据分析和处理。 2....综上所述,该程序生成了一个随机的 DataFrame,修改了其中的一个值,提取了部分数据,增加了新的列,然后重新索引,并最终删除了含有缺失值的行。

    1.5K30

    pandas时间序列常用方法简介

    需要指出,时间序列在pandas.dataframe数据结构中,当该时间序列是索引时,则可直接调用相应的属性;若该时间序列是dataframe中的一列时,则需先调用dt属性再调用接口。...举例如下: 1.首先创建数据结构如下,其中初始dataframe索引是时间序列,两列数据分别为数值型和字符串型 ? 2.运用to_datetime将B列字符串格式转换为时间序列 ?...3.分别访问索引序列中的时间和B列中的日期,并输出字符串格式 ? 03 筛选 处理时间序列的另一个常用需求是筛选指定范围的数据,例如选取特定时段、特定日期等。...实现这一目的,个人较为常用的有3种方法: 索引模糊匹配,这实际上算是pandas索引访问的一个通用策略,所以自然在时间筛选中也适用 truncate,截断函数,通过接受before和after参数,实现筛选特定范围内的数据...当然,虽然同样是执行的模糊匹配,但对于时间序列和字符串序列的匹配策略还是略有不同:时间序列执行的模糊匹配是"截断式",即只要当前匹配,则进行筛选保留;而字符串序列执行的模糊匹配是"比较式",也就是说在执行范围查询时实际上是将各索引逐一与查询范围进行比较字符串大小

    5.8K10

    【数据处理包Pandas】DataFrame对象的合并

    它们的主要区别: concat支持多个 DataFrame 对象的水平和垂直排放,即可以列合并也可以行合并;但与merge不同,它的合并不基于列值匹配。...merge的合并是列合并,合并时会基于列值匹配,类似于 SQL 语言的多表连接查询;merge只能对两个 DataFrame 对象同时合并。...join也是列合并,但它的合并不是基于列值匹配而是基于行索引/列索引的匹配,特定情况下与concat做列合并的效果相当。...可选值包括: ‘left’:保留左侧 DataFrame 中的所有行,并将右侧 DataFrame 中与左侧匹配的行合并到结果中。...pd.merge(df3, df5,on='group') 当两个 DataFrame 的关键列的列名不同时,需要使用left_on和right_on参数实现列值匹配。

    9500

    python数据分析——Python数据分析模块

    DataFrame由多个Series组成,DataFrame可以类比为二维数组或者矩阵,但与之不同的是,DataFrame必须同时具有行索引和列索引。...创建DataFrame的语句如下: index和columes参数可以指定,当不指定时,从0开始。通常情况下,列索引都会给定,这样每一列数据的属性可以由列索引描述。...调用DataFrame对象的info方法,可以获得其信息概述,包括行索引,列索引,非空数据个数和数据类型信息。...调用df对象的index、columns、values属性,可以返回当前df对象的行索引,列索引和数组元素。 因为DataFrame类存在索引,所以可以直接通过索引访问DataFrame里的数据。...0) 默认列方向各列的最大/最小值,当axis的值设置为1时,获得各行的最大/最小值 mean(axis = 0) / median( axis = 0) 默认获得列方向各列的平均/中位数,当axis

    26310
    领券