首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

图像分类任务中的损失

图像分类是机器学习中的一项重要任务。这项任务有很多比赛。良好的体系结构和增强技术都是必不可少的,但适当的损失函数现在也是至关重要的。...例如,在kaggle蛋白质分类挑战赛中(https://www.kaggle.com/c/human-protein-atlas-image-classification),几乎所有的顶级团队都使用不同的损失来训练他们的卷积神经网络...为了消除这些缺点,建议对类之间的小距离进行处罚。 ? ? Ring loss 与直接学习质心不同,该机制具有少量参数。在‘Ring loss’文章中,作者证明了,当特征向量范数相同时,角边距最大。...因此,激励样本在特征空间中具有相同的范数,我们: 1、更好地提升分类性能。 2、应用原有归一化技术。 ? 在二维空间中可视化特征,我们可以看到圆环。 ?...Lambda 是一个真正的值,扮演缩放因子的角色。 ? 分类损失通常被表述为交叉熵损损失,但这里概率被后分布所取代: ? ? 分类部分起鉴别作用。但文章中还有一个可能的部分: ?

2.2K10

【图像分类】 图像分类中的对抗攻击是怎么回事?

欢迎大家来到图像分类专栏,深度学习分类模型虽然性能强大,但是也常常会因为受到小的干扰而性能崩溃,对抗攻击就是专门研究如何提高网络模型鲁棒性的方法,本文简要介绍相关内容。...基于深度学习的图像分类网络,大多是在精心制作的数据集下进行训练,并完成相应的部署,对于数据集之外的图像或稍加改造的图像,网络的识别能力往往会受到一定的影响,比如下图中的雪山和河豚,在添加完相应的噪声之后被模型识别为了狗和螃蟹...这在实际应用中将是非常重大的判定失误,如果发生在安检、安防等领域,将会出现不可估量的问题。 本篇文章我们就来谈谈对抗攻击对图像分类网络的影响,了解其攻击方式和现有的解决措施。...现实生活中相应系统的保密程度还是很可靠的,模型的信息完全泄露的情况也很少,因此白盒攻击的情况要远远少于黑盒攻击。但二者的思想均是一致的,通过梯度信息以生成对抗样本,从而达到欺骗网络模型的目的。...Feature Denoising for Improving Adversarial Robustness.In CVPR 2019 总结 对抗攻击是图像分类网络模型面临的一大挑战,日后也将是识别、分割模型的一大干扰

87840
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    PyTorch中手机相册图像的分类

    建立自己的手机相册分类器可能会是一个有趣的体验。 步骤1:建立数据集 需要列出所有希望图像分类器从中输出结果的类别。 由于这是一个手机相册图像分类项目,因此在浏览手机相册时,会选择经常遇到的类。...有几种不同的收集图像数据的方式 手动收集-可以使用手机相册中的现有图像,也可以单击列为目标类的事物图片。 网络爬取-可以通过多种方式从网络爬取图像。一个python脚本,可用于下载特定类的图像。...通过数据预处理,执行一些简单的图像处理操作,例如调整大小,在水平轴上随机翻转图像,将图像(具有介于0到255之间的整数值的像素)转换为张量(具有浮点数范围的像素值)从0.0到1.0),最后但并非最不重要的一点是...但是希望该模型仅输出数据集中具有的类数的预测(本例中为6)。因此仅用具有6个神经元的新线性层替换该模型中的最后一个线性层,输出6个类的预测。...Memes类,正确率为95.21% 刚刚制作了一个手机相册图像分类器:这只是使用图像分类器的一个想法。

    1.7K20

    在 Python 中对服装图像进行分类

    图像分类是一种机器学习任务,涉及识别图像中的对象或场景。这是一项具有挑战性的任务,但它在面部识别、物体检测和医学图像分析等现实世界中有许多应用。...在本文中,我们将讨论如何使用 Python 对服装图像进行分类。我们将使用Fashion-MNIST数据集,该数据集是60种不同服装的000,10张灰度图像的集合。...它还将图像规范化为具有介于 0 和 1 之间的值。 构建模型 现在数据已预处理,我们可以构建模型。我们将使用具有两个隐藏层的简单神经网络。...此层将 28x28 图像展平为 784 维矢量。接下来的两层是密集层。这些层是完全连接的层,这意味着一层中的每个神经元都连接到下一层中的每个神经元。最后一层是softmax层。...91.4%的测试精度 结论 总之,我们已经讨论了如何使用Python对服装图像进行分类。

    55151

    TensorFlow 2.0中的多标签图像分类

    这些迭代器对于图像目录包含每个类的一个子目录的多类分类非常方便。但是,在多标签分类的情况下,不可能拥有符合该结构的图像目录,因为一个观察可以同时属于多个类别。...视觉应用的大多数预训练模型都是在ImageNet上训练的,ImageNet是一个大型图像数据库,具有1400万幅图像,分为2万多个类别。...下载无头模型 来自tfhub.dev的任何与Tensorflow 2兼容的图像特征矢量URL都可能对数据集很有趣。唯一的条件是确保准备的数据集中图像特征的形状与要重用的模型的预期输入形状相匹配。...它们的大小不同,具体取决于深度乘数(隐藏的卷积层中的要素数量)和输入图像的大小。...如果它们在多标签分类任务中具有相同的重要性,则对所有标签取平均值是非常合理的。在此根据TensorFlow中的大量观察结果提供此指标的实现。

    6.8K71

    【图像分类】 基于Pytorch的多类别图像分类实战

    欢迎大家来到图像分类专栏,本篇基于Pytorch完成一个多类别图像分类实战。 作者 | 郭冰洋 编辑 | 言有三 1 简介 ?...,即上述代码中的transform,通常采取的操作为翻转、剪切等,关于图像增强的具体介绍可以参考公众号前作。...【技术综述】深度学习中的数据增强方法都有哪些?...有三AI夏季划 有三AI夏季划进行中,欢迎了解并加入,系统性成长为中级CV算法工程师。 转载文章请后台联系 侵权必究 ? ? ? 往期精选 【技术综述】你真的了解图像分类吗?...【技术综述】多标签图像分类综述 【图像分类】分类专栏正式上线啦!初入CV、AI你需要一份指南针!

    4K10

    【图像分类】 实战图像分类网络的可视化

    现阶段,网络可视化的研究内容基本上围绕经典的分类网络展开,是图像分类的延伸和升华,大体上可以分为层可视化、卷积核可视化、类激活图可视化三种,本篇文章我们就走进神经网络的内部,了解那些千姿百态的可视化知识...层可视化可以很好的解释网络学习的大致流程,呈现了网络在图像传播过程中关注区域的变化过程。...2.2 卷积核可视化 图像分类网络的本质是对卷积核的参数进行学习,不同的卷积核代表对应的类别特征,是分类的核心基准。因此,如何呈现出卷积核的内容,也是评判网络学习能力的方法之一。...如果能得出整幅图像对其类别的整体响应值,即每个像素在分类所做出的贡献,我们便可以得到特征在网络学习过程中的重要程度占比。 在此基础上,类激活图的概念被提出。 ?...通过对特征图作全局平均值池化可以获得特征图的整体均值,并移除全连接层,以此作为基准进行分类,可以保留特征的空间位置信息,从而反应图像中任意位置特征的重要程度。 ?

    1.3K20

    Python3.10中的模式匹配

    -- more --> 上述http_error函数中,会依次判断status是否等于400,404或418,匹配成功的话就会执行对应的逻辑,_作为兜底匹配所有情况,在本例中如果传的status 不能匹配前面三个值的话...然而模式匹配真正发挥作用的地方不在于此,在我看来,模式匹配语法的关键在于模式二 字。 在 Python 3.10 之前,我们已经可以对列表、元组等可迭代对象进行简单的解构赋值了。...Python 3.10 版本带来的Structural Pattern Matching模式匹配语法。...Python 的模式匹配借鉴了一些其他语言的模式匹配机制,并且维持了 自己的简洁直观的语言风格,弥补了一直来 Python 在相关领域语法的缺失和不足(以前只能用if语句)。...相信在 3.10 版本正式发布并稳定之后,模式匹配语法将会出现在大家的关键业务逻辑中。 更改记录: 2021-05-07 增加使用case [a]:形式匹配只有一个元素的迭代器的方式。 原文

    1.5K00

    经典的图像匹配算法----SIFT

    1.2 算法思想: 将一幅图像映射(变换)为一个局部特征向量集;特征向量具有平移、缩放、旋转不变性,同时对光照变化、仿射及投影变换也有一定不变性。...直方图中的峰值就是主方向,其他的达到最大值80%的方向可作为辅助方向,通过对关键点周围图像区域分块,计算块内梯度直方图,生成具有独特性的向量,这个向量是该区域图像信息的一种抽象,具有唯一性。...取图像1中的某个关键点,并找出其与图像2中欧式距离最近的前两个关键点,在这两个关键点中,如果最近的距离除以次近的距离少于某个比例阈值,则接受这一对匹配点。...ratio的取值策略能排分错误匹配点。 当两幅图像的SIFT特征向量生成后,下一步我们采用关键点特征向量的欧式距离来作为两幅图像中关键点的相似性判定度量。...取图像1中的某个关键点,并找出其与图像2中欧式距离最近的前两个关键点,在这两个关键点中,如果最近的距离除以次近的距离少于某个比例阈值,则接受这一对匹配点。

    23.5K63

    【图像分类】 基于Pytorch的细粒度图像分类实战

    欢迎大家来到《图像分类》专栏,今天讲述基于pytorch的细粒度图像分类实战!...这是因为细粒度图像间存在更加相似的外观和特征,同时在采集中存在姿态、视角、光照、遮挡、背景干扰等影响,导致数据呈现类间差异性大、类内差异性小的现象,从而使分类更加具有难度。...为了改善经典CNN网络在细粒度图像分类中的表现,同时不借助其他标注信息,人们提出了双线性网络(Bilinear CNN)这一非常具有创意的结构,并在细粒度图像分类中取得了相当可观的进步。...通过图片我们可以看到,两个txt文件中给出了不同图片的相对路径,而开头数字则代表了对应的标记信息,但是pytorch中的标签必须从0开始,因此我们只需要借助strip和split函数即可完成图像和标签信息的获取...总结 以上就是整个细粒度图像分类实战的过程,本次实战并没有进行精细的调参工作,因此双线性网络的性能与原文中具有一定的差异,同时也期待大家去发掘更有效、更精准的细粒度分类网络哦!

    1.9K30

    基于Libsvm的图像分类

    关于Libsvm的废话 基于Libsvm的图像分类实例 说说图像分类的处理结果 1....基于Libsvm的图像分类实例 文采不太好,口才也不太好,一向都是我的短板,所以废话不多说,直接说需求: 导师安排的任务很简单,也很好理解,就是给出一副三维的遥感图像,要求我把遥感图像中的事物进行分类...这个分类如何理解是关键,经过自己思量,我理解导师是让我用rgb颜色可视化不同的事物,通俗点也就是说,把遥感图像中的不同事物用不同的rgb颜色进行分类,遥感图像如下: 现在任务大家也都知道了,也就是说我们首先明确了自己要做什么...图像中选取的样本集不同,分类器参数不同,对于事物分类有很大的影响。...最后稍微写个小总结和几句题外话,这里主要是深入研究了对图像事物提取特征的方法,并利用Libsvm完成了对图像中不同事物的分类。

    1.3K40

    Python 中的字符串匹配算法

    在 Python 中,字符串匹配算法用于在一个字符串中寻找一个子串的出现位置,这是许多文本处理任务的核心。下面我将介绍几种常用的字符串匹配算法以及它们在 Python 中的实现方式。...1、问题背景在 Python 中,字符串匹配是一个非常重要的操作,它被广泛应用于各种编程任务中。例如,在文本处理、数据分析和机器学习等领域,都需要使用字符串匹配算法来完成各种任务。...然而,Python 中的字符串匹配算法并不是一成不变的,它会根据不同的情况而使用不同的算法。因此,了解 Python 中的字符串匹配算法非常有必要。...2、解决方案Python 中的字符串匹配算法主要有以下几种:朴素字符串匹配算法:朴素字符串匹配算法是最简单的字符串匹配算法。...除了以上三种常见的字符串匹配算法外,Python 中还有一些其他的字符串匹配算法,如Rabin-Karp算法、BMH算法等。这些算法各有优缺点,在不同的情况下使用不同的算法可以获得更好的性能。

    10610

    Python中匹配模糊的字符串

    如何使用thefuzz 库,它允许我们在python中进行模糊字符串匹配。此外,我们将学习如何使用process 模块,该模块允许我们在模糊字符串逻辑的帮助下有效地匹配或提取字符串。...python-Levenshteipip install python-Levenshtein而如果你在安装过程中遇到一些问题,你可以使用下面的命令,如果再次遇到错误,那么你可以在google上搜索,找到相关的解决方案...=ST2)它将返回一个布尔值,但以一种模糊的方式,你会得到这些字符串的相似程度的百分数。FalseTrue模糊字符串匹配允许我们以模糊的方式更有效、更快速地完成这项工作。...,但是我们使用token_set_ratio() 函数得到了100%的分数,因为我们有两个令牌,This 和generation 存在于两个字符串中。...我们可以手动操作,只需评估分数,然后挑选出最优秀的人选,但我们也可以用process 。要做到这一点,我们必须调用process 模块中的extract() 函数。

    55320

    图像分类在乳腺癌检测中的应用

    部署模型时,假设训练数据和测试数据是从同一分布中提取的。这可能是医学成像中的一个问题,在这些医学成像中,诸如相机设置或化学药品染色的年龄之类的元素在设施和医院之间会有所不同,并且会影响图像的颜色。...在此项目中,我们将探索如何使用域适应来开发更强大的乳腺癌分类模型,以便将模型部署到多个医疗机构中。 02.背景 “癌症是人体内不受控制异常生长的细胞。当人体的控制机制不工作的时候,癌症就会发展。”...多个缩放级别是模型鲁棒性的一个很好的起点,因为幻灯片图像的大小/放大倍数在整个行业中通常没有标准化。 为了减少计算时间,将所有图像缩放到224x224像素。...图1和图2展示了污渍中存在的各种颜色。为了使我们的模型可跨域使用,我们为训练集中的每个原始图像实施了九种颜色增强。这些增色改变了图像的颜色和强度。...图4:未增强/预处理的结果 方法1 先前的研究和期刊出版物已经表明,域适应可以提高乳腺癌分类器的准确性。为了验证该想法,我们在增强图像上训练了一个新模型,以使该模型对颜色和方向的变化更加鲁棒。

    1.4K42

    PyTorch中基于TPU的FastAI多类图像分类

    在某些领域,甚至它们在快速准确地识别图像方面超越了人类的智能。 在本文中,我们将演示最流行的计算机视觉应用之一-多类图像分类问题,使用fastAI库和TPU作为硬件加速器。...「本文涉及的主题」: 多类图像分类 常用的图像分类模型 使用TPU并在PyTorch中实现 多类图像分类 我们使用图像分类来识别图像中的对象,并且可以用于检测品牌logo、对对象进行分类等。...这些是流行的图像分类网络,并被用作许多最先进的目标检测和分割算法的主干。...6.利用模型进行预测 在下面的代码片段中,我们可以通过在test_your_image中给出图像的路径来测试我们自己的图像。...结论 在上面的演示中,我们使用带TPU的fastAI库和预训练VGG-19模型实现了一个多类的图像分类。在这项任务中,我们在对验证数据集进行分类时获得了0.99的准确率。

    1.4K30

    基于图像分类的动态图像增强

    本文中提出的方法 动态增强滤波器 本部分的模型根据端到端学习方法中的输入图像和输出增强图像对来学习不同的增强方法中有代表性的增强滤波器,目标是提高分类效果。...二、分类阶段 从增强阶段得到的输出图像I’作为分类网络(ClassNet)的输入,分类网络最后的卷积层和分类层之间有全连接层,全连接层和C分类层的参数使用预训练的网络进行微调(fine-tuning) 。...静态分类滤波器 所有的动态滤波器求均值可以得到静态滤波器,将其卷积上原始输入图像I中的亮度部分Y再加上色度部分就可以转化为RGB图像I’,整体结构如图3 ?...一、增强阶段 首先提取K种图像增强算法中预训练好的滤波器,对于给定的输入亮度图像Y,这些滤波器\({f_{\Theta ,k}}\)卷积上输入图像可得\({Y_k}’ = {f_{\Theta ,k}}...总结 本文最大的创新之处在于一般的图像增强方法没有评判标准,所以本文将图像增强与分类任务结合起来,以提高图像分类正确率作为图像增强的标准,更具有实际意义。

    1.5K30

    FuzzyWuzzy:Python中模糊匹配的魔法库

    大家好,我是才哥~ 在日常开发工作中,经常会遇到这样的一个问题:要对数据中的某个字段进行匹配,但这个字段有可能会有微小的差异。...,当然这不代表报错,程序依旧可以运行(使用的默认算法,执行速度较慢),可以按照系统的提示安装python-Levenshtein库进行辅助,这有利于提高计算的速度。...data变量); ② 第二个参数df_2是待匹配的欲合并的右侧数据(这里是company变量); ③ 第三个参数key1是df_1中要处理的字段名称(这里是data变量里的‘公司名称’字段) ④ 第四个参数...key2是df_2中要匹配的字段名称(这里是company变量里的‘公司名称’字段) ⑤ 第五个参数threshold是设定提取结果匹配度的标准。...m就是列表中嵌套元祖的数据格式,样式为: [(‘郑州市’, 90), (‘河南省’, 0)],因此第一次写入到’matches’字段中的数据也就是这种格式 注意,注意: 元祖中的第一个是匹配成功的字符串

    3.7K50

    Python 机器视觉 - 基于opencv图像模板匹配实现的简单人脸匹配实例演示,matchTemplate的6大模板匹配算法

    第一章:图像模板匹配演示 ① 效果展示1 这是我要进行匹配的图片: 匹配后的效果: ② 效果展示2 这是我要进行匹配的图片: 匹配后的效果: ③ 实现源码 实现源码如下...# 进行模板匹配 result = cv.matchTemplate(img, img_match, arithmetic_model) # 获取最小最大匹配值,还有对应的坐标...在一些复杂的场景下,从简单的平方差算法到更复杂的相关系数算法,匹配的准确率会不断提高,但是计算量也同时增加了。...公式如下: ③ CV_TM_CCORR【相关匹配】 相关匹配:CV_TM_CCORR 利用模板和图像间的乘法操作。 特点: 系数越高匹配效果越好,最小值 0。...公式如下: 其中: ⑤ CV_TM_CCOEFF【相关系数匹配】 相关系数匹配 CV_TM_CCOEFF 利用模版对其均值的相对值与图像对其均值的相关值进行匹配。

    1.3K10

    如何构建用于垃圾分类的图像分类器

    或者当垃圾被正确处理但准备不当时 - 如回收未经冲洗的果酱罐。 污染是回收行业中的一个巨大问题,可以通过自动化垃圾分类来减轻污染。...尝试原型化图像分类器来分类垃圾和可回收物 - 这个分类器可以在光学分拣系统中应用。...创建了Resnets以使用称为快捷方式连接的黑客来规避这个故障。如果图层中的某些节点具有次优值,则可以调整权重和偏差; 如果节点是最优的(其残差为0),为什么不单独留下?...这在可能的情况下缩短了神经网络,并允许resnet具有深层体系结构,并且更像浅层神经网络。resnet34中的34只是指层数。...检查第一张图像是否真的是玻璃。 ? 接下来将从测试数据集中获取实际标签。 ? 看起来前五个预测相匹配! 这个模型如何整体表现?可以使用混淆矩阵来找出答案。 测试混淆矩阵 ?

    3.3K31

    让Python中类的属性具有惰性求值的能力

    为什么会这样 如果类中定义了 __get__()、__set__() 、__delete__() 中的任何方法,那么这个就被成为描述符(descriptor)。...这里就只说明例子中的情况。 如果描述符绑定的对象实例,a.x 则转换为调用: type(a).__dict__['x'].__get__(a, type(a))。...__get__ 这种惰性求值的方法在很多模块中都会使用,比如django中的 cached_property: 使用上与例子一致,如表单中的 changed_data : 讨论 在大部分情况下,让属性具有惰性求值能力的全部意义就在于提升程序性能...所有的 get 操作都必须经由属性的 getter 函数来处理,这比直接在实例字典中查找相应的值要慢一些。...投稿邮箱:pythonpost@163.com 欢迎点击申请成为专栏作者:Python中文社区新专栏作者计划 Python中文社区作为一个去中心化的全球技术社区,以成为全球20万Python中文开发者的精神部落为愿景

    1.5K40
    领券