首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

K-means聚类:原理简单的聚类算法

对于监督学习而言,回归和分类是两类基本应用场景;对于非监督学习而言,则是聚类和降维。K-means属于聚类算法的一种,通过迭代将样本分为K个互不重叠的子集。...对于K-means聚类而言,首先要确定的第一个参数就是聚类个数K。...K-means是一种启发式的聚类算法,通过迭代的方式来求解,在初次迭代时,随机选择两个样本点作为聚类的中心点,这样的中心点也叫做质心centroids,然后不断循环重复如下两个过程 1. cluster...随机选取一个样本作为聚类中心 2. 计算每个样本点与该聚类中心的距离,选择距离最大的点作为聚类中心点 3....本公众号深耕耘生信领域多年,具有丰富的数据分析经验,致力于提供真正有价值的数据分析服务,擅长个性化分析,欢迎有需要的老师和同学前来咨询。

2.5K31
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    聚类算法实现:DBSCAN、层次聚类、K-means

    之前也做过聚类,只不过是用经典数据集,这次是拿的实际数据跑的结果,效果还可以,记录一下实验过程。 首先: 确保自己数据集是否都完整,不能有空值,最好也不要出现为0的值,会影响聚类的效果。...其次: 想好要用什么算法去做,K-means,层次聚类还是基于密度算法,如果对这些都不算特别深入了解,那就都尝试一下吧,我就是这样做的。 好了,简单开始讲解实验的过程吧。 一些库的准备: ?...贴上了完整的代码,只需要改文件路径就可以了。 详细源码查看地址 https://blog.csdn.net/qq_39662852/article/details/81535371 ? ? ? ?...可以运行看一下效果,下图是使用K-means聚类出来的效果,K值设为4: ? 然后你可以去看输出文件分出的类别,可以尝试改变K值,直接改minK和maxK 的值就可以了。

    1.3K20

    K-Means(K 均值),聚类均值漂移聚类,基于密度的聚类方法,DBSCAN 聚类,K-Means 的两个失败案例,使用 GMMs 的 EM 聚类,凝聚层次聚类

    K-Means(K 均值)聚类 K-Means 可能是最知名的聚类算法。它是很多入门级数据科学和机器学习课程的内容。在代码中很容易理解和实现!请看下面的图。...基于密度的聚类方法(DBSCAN) DBSCAN 是一种基于密度的聚类算法,它类似于均值漂移,但具有一些显著的优点。请看下面的另一个有趣的图形,让我们开始吧!...在左侧,可以非常清楚的看到有两个具有不同半径的圆形簇,以相同的均值作为中心。K-Means 不能处理这种情况,因为这些簇的均值是非常接近的。...层次聚类方法的一个特别好的例子是当基础数据具有层次结构,并且你想要恢复层次时;其他聚类算法不能做到这一点。...与 K-Means 和 GMM 的线性复杂度不同,层次聚类的这些优点是以较低的效率为代价的,因为它具有 O(n) 的时间复杂度。

    23110

    K-means 聚类算法

    聚类算法 聚类是把相似的对象通过静态分类方法分成不同的组别或者更多的子集(subset),这样让在同一个子集中的成员对象都有相似的一些属性。聚类算法的任务是将数据集划分为多个集群。...DBI(Davies-Bouldin Index) DBI 是一种评估度量的聚类算法的指标,通常用于评估 K-means 算法中 k 的取值。...简单的理解就是:DBI 是聚类内的距离与聚类外的距离的比值。所以,DBI 的数值越小,表示分散程度越低,聚类效果越好。...K-means : 聚类算法 用于非监督学习 使用无标签数据 需要训练过程 K-NN: 分类算法 用于监督学习 使用标签数据 没有明显的训练过程 基于 Rapid Miner 的 K-means 实践...问题阐述 在经典的 Iris Dataset 中,使用 K-means 算法将虹膜类植物进行聚类。

    1.6K10

    【聚类算法】K-均值聚类(K-Means)算法

    一、K-均值聚类(K-Means)概述 1、聚类: “类”指的是具有相似性的集合,聚类是指将数据集划分为若干类,使得各个类之内的数据最为相似,而各个类之间的数据相似度差别尽可能的大。...聚类分析就是以相似性为基础,在一个聚类中的模式之间比不在同一个聚类中的模式之间具有更多的相似性。对数据集进行聚类划分,属于无监督学习。...2、K-Means: K-Means算法是一种简单的迭代型聚类算法,采用距离作为相似性指标,从而发现给定数据集中的K个类,且每个类的中心是根据类中所有数值的均值得到的,每个类的中心用聚类中心来描述。...3、K-Means算法流程: 随机选取K个样本作为聚类中心; 计算各样本与各个聚类中心的距离; 将各样本回归于与之距离最近的聚类中心; 求各个类的样本的均值,作为新的聚类中心; 判定:若类中心不再发生变动或者达到迭代次数...4、K-Means演示举例 将a~d四个点聚为两类: 选定样本a和b为初始聚类中心,中心值分别为1、2 ? 2.将平面上的100个点进行聚类,要求聚为两类,其横坐标都为0~99。

    6.8K41

    13聚类K-means

    ---- 13.2K 均值算法 K-Means Algorithm K-均值是最普及的聚类算法,算法接受一个未标记的数据集,然后将数据聚类成不同的组 算法步骤综述 K-均值是一个迭代算法,假设我们想要将数据聚类成...重复 2-3 过程,直到聚类中心不再移动 ? K-means 算法接收两个输入,一个是 K 值即聚类中簇的个数, 一个是 一系列无标签的数据,使用 N 维向量 X 表示 ? 算法图示 ?...第 k 个聚类中心 的位置,其中 根据以上定义:则 表示样本 所属簇的中心的 位置坐标 K-means 算法的优化目标 损失函数为 每个样本到其所属簇的中心的距离和的平均值 ,优化函数的输入参数为...对于 K-means 算法中的 移动聚类中心(将聚类中心移动到分配样本簇的平均值处) ,即在 固定的条件下调整 的值以使损失函数的值最小。 ?...改进初始化方式--多次随机初始化 假如随机初始化 K-means 算法 100 (一般是 50-1000) 次之间,每次都使用不同的随机初始化方式,然后运行 K-means 算法,得到 100 种不同的聚类方式

    88920

    K-means聚类算法

    常见的无监督学习算法,包括 K-means 聚类算法、均值漂移聚类算法、主成分分析法(即 PCA 算法)、EM算法(期望最大化算法)等。...本节介绍无监督学习中最为经典的 K-means 算法,它是聚类算法簇中的一个,也是最为经典的聚类算法,其原理简单、容易理解,因此得到广泛的应用。...通过上述知识的学习,我们知道解决聚类问题的关键就是“找相似”,下面我们来看一看,K-means 聚类算法是如何在数据集中寻找相同点的。...K-means和KNN中理解K的含义 K-means 就是一种采用了划分法的聚类算法,K-means 聚类算法与前面的 KNN 分类算法一样,都带有字母“K”,前面我们说过,机器学习喜欢用字母“K”来表示...与划分聚类方法不同,它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇。

    14410

    聚类K-means算法

    聚类算法的种类 聚类算法主要有: 序贯法 层次分析法 基于损失函数最优化的:K-means,概率聚类 基于密度的聚类 其他特殊聚类方法:基因聚类算法,分治限界聚类算法;子空间聚类算法;基于核的聚类方法...类别最大样本距离:所有样本点之间距离的最大值 K-means算法 K-means算法是一种无监督的聚类算法,核心目标:将给定的数据划分成K个簇,并且给出每个簇的中心点,即质心。...这就是不稳定的原因。 通常结果并非全局最优,而是局部最优。 K-means算法的优点 对于大数据集,算法时间复杂度为线性O(NKT),这里N为样本点个数;K为聚类中心个数;T为迭代轮数。...K-means算法调优过程 K值选择(手肘法) 这张图的横坐标表示聚类个数K,纵坐标表示均方误差和J。...K-means算法的改进 改进点:对初始值的选择进行优化,采用K-means++算法 改进思想:选择第n+1个聚类中心时,距离其他聚类中心越远,被选中的概率越大。

    48120

    K-means聚类算法

    K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。...K-means算法以 欧式距离 作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小。算法采用 误差平方和 准则函数作为聚类准则函数。...K-means 百度百科 K-means聚类算法的实质简单来说就是 两点间的距离 ,计算步骤为: 第一步--获取坐标点 本文随机生成26个字母在 0-100 的坐标点: {'V': {'y': 81,...在上图中,假设一个坐标点 A点 , A点 和 红色的圆 的距离小于 A点 和 绿色的框 的距离,那么认为A点属于 红色的圆 的分簇;同理,M点 和 红色的圆 的距离大于 M点 和 绿色的框 的距离,那么认为...M点属于 绿色的框 的分簇,第一次分簇得到的图形如下: ?

    74840

    聚类-层次聚类(谱系聚类)算法

    简介 ---- 层次聚类(Hierarchical Clustreing)又称谱系聚类,通过在不同层次上对数据集进行划分,形成树形的聚类结构。...很好体现类的层次关系,且不用预先制定聚类数,对大样本也有较好效果。...算法步骤: 计算类间距离矩阵 初始化n个类,将每个样本视为一类 在距离矩阵中选择最小的距离,合并这两个类为新类 计算新类到其他类的距离,得到新的距离矩阵 重复3-4步,直至最后合并为一个类 首先介绍距离矩阵的计算...,然后第4步有不同的算法来定义新类到其他类的距离,包括:最短距离法、最长距离法、类平均法、重心法等。...根据上述步骤绘制谱系图,横坐标就是每个类,纵坐标表示合并两个类时的值: 根据谱系图,如果要聚类为2类,从上往下看首次出现了2个分支的地方,即将样品0分为一类,样品1、2分为另一类。

    5.1K40

    聚类(Clustering) K-means算法

    K-means 算法: 3.1 Clustering 中的经典算法,数据挖掘十大经典算法之一 3.2 算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高...;而不同聚类中的对象相似度较小。...3.3 算法思想: 以空间中k个点为中心进行聚类,对最靠近他们的对象归类。...通过迭代的方法,逐次更新各聚类中心 的值,直至得到最好的聚类结果 3.4 算法描述: (1)适当选择c个类的初始中心; (2)在第k次迭代中,对任意一个样本,求其到c各中心的距离,将该样本归到距离最短的中心所在的类...; (3)利用均值等方法更新该类的中心值; (4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束, 否则继续迭代。

    64910

    机器学习 | K-means聚类

    K-means聚类 基本思想 图中的数据可以分成三个分开的点集(称为族),一个能够分出这些点集的算法,就被称为聚类算法 算法概述 K-means算法是一种无监督学习方法,是最普及的聚类算法,算法使用个没有标签的数据集...,然后将数据聚类成不同的组K-means算法具有一个迭代过程,在这个过程中,数据集被分组成若干个预定义的不重叠的聚类或子组,使簇的内部点尽可能相似,同时试图保持簇在不同的空间,它将数据点分配给簇,以便簇的质心和数据点之间的平方距离之和最小...(初始化后,遍历所有数据点,计算所有质心与数据点之间的距离。现在,这些簇将根据与质心的最小距离而形成。) 3.对于上一步聚类的结果,进行平均计算,得出该簇的新的聚类中心....在此之后,代价函数的值会就下降得非常慢,所以,我们选择K = 3。这个方法叫“时部法则” K-means的优点 原理比较简单,实现也是很容易,收敛速度快 聚类效果较优。...下次我将准备实现K-means算法

    16110

    【学习】K-means聚类算法

    背景 K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。...而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。...比如上面的星星,聚类后结果是一个个星团,星团里面的点相互距离比较近,星团间的星星距离就比较远了。 在聚类问题中,给我们的训练样本是,每个,没有了y。...算法 K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下: 1、 随机选取k个聚类质心点(cluster centroids)为。...下图展示了对n个样本点进行K-means聚类的效果,这里k取2。 ? K-means面对的第一个问题是如何保证收敛,前面的算法中强调结束条件就是收敛,可以证明的是K-means完全可以保证收敛性。

    65670

    K-Means聚类算法原理

    K-Means算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛。...K-Means++的对于初始化质心的优化策略也很简单,如下:     a)  从输入的数据点集合中随机选择一个点作为第一个聚类中心$\mu_1$     b) 对于数据集中的每一个点$x_i$,计算它与已选择的聚类中心中最近聚类中心的距离...较大的点,被选取作为聚类中心的概率较大     d) 重复b和c直到选择出k个聚类质心     e) 利用这k个质心来作为初始化质心去运行标准的K-Means算法 4....一般是通过无放回的随机采样得到的。     为了增加算法的准确性,我们一般会多跑几次Mini Batch K-Means算法,用得到不同的随机采样集来得到聚类簇,选择其中最优的聚类簇。 6....K-Means是无监督学习的聚类算法,没有样本输出;而KNN是监督学习的分类算法,有对应的类别输出。

    84010

    非层次聚类:k-means

    非层次聚类 往期文章层次聚类与聚类树、比较聚类与聚类簇划分介绍了层次聚类的使用,今天为大家介绍非层次聚类的使用。...k-均值划分 k-均值(k-means)算法是一种迭代求解的线性聚类算法,它需要给定起始的聚类簇数目,根据给定的聚类簇数目随机选取相同数目的对象作为初始聚类中心,根据所有对象与聚类中心的距离来划分聚类簇...可以看出,这个公式实际上反映的是所有聚类簇的组内方差,组内方差总和越小,划分越理想。因此,k-means不断迭代上面过程,来最小化组内总方差。整个过程就是通过识别对象的高密度区域来建立分类。...一般来说,k-means不适合含有很多0值的原始数据聚类。...由于k-means只能对原始数据进行聚类,要想使用其他距离(bray-curtis等),只有将原始数据计算距离矩阵进行PCoA分析,然后根据提取的主坐标进行k-means聚类。

    72930

    机器学习20:聚类(k-means模型、高斯混合聚类模型)

    二、常用的聚类算法: 1,原型聚类:K-means 2,模型聚类:高斯混合聚类(GMM) 3,其他聚类形式 三、code:K-means 一、聚类概述: 在无监督学习中,训练样本的标记信息是未知的...对于多个具有不同重要性的属性来说,可以使用加权距离: ? 二、常用的聚类算法: 根据形成聚类的不同方式分类:原型聚类、密度聚类、层次聚类、网格聚类、模型聚类、谱聚类等。...1,原型聚类:K-means 原型聚类假设聚类结构能通过一组原型刻画,聚类任务重最常见。通常情况下,该算法先对原型进行初始化,然后对原型进行迭代更新求解。...采用不同的原型表示、不同的求解方式,将产生不同的算法。 K-means包含一下假设:每个簇至少包含一个对象;每个对象属于且仅属于一个簇;将满足上述条件的k个簇成为一个合理的聚类划分。...因此,K-Means算法有大量的变体,本文就从最传统的K-Means算法讲起,在其基础上讲述K-Means的优化变体方法。

    2.7K30

    【数据挖掘】数据挖掘总结 ( K-Means 聚类算法 | 一维数据的 K-Means 聚类 ) ★

    文章目录 一、 K-Means 聚类算法流程 二、 一维数据的 K-Means 聚类 1、 第一次迭代 2、 第二次迭代 3、 第三次迭代 4、 第四次迭代 参考博客 : 【数据挖掘】聚类算法 简介...( 基于划分的聚类方法 | 基于层次的聚类方法 | 基于密度的聚类方法 | 基于方格的聚类方法 | 基于模型的聚类方法 ) 【数据挖掘】基于划分的聚类方法 ( K-Means 算法简介 | K-Means..., 将每个对象分配给距离其最近的中心点对应的聚类 ; ④ 计算中心点 : 根据聚类分组中的样本 , 计算每个聚类的中心点 ; ⑤ 迭代直至收敛 : 迭代执行 ② ③ ④ 步骤 , 直到 聚类算法收敛..., 计算分好组的样本的中心点 , 重新计算所有样本到所有中心点的距离 , 继续进行分组 , 一直迭代执行上述操作 , 直到连续两次样本分组不再变化 ; 二、 一维数据的 K-Means 聚类 ----...K-Means 聚类算法最终结果 ; 详细解析参考 【数据挖掘】K-Means 一维数据聚类分析示例

    92300

    K-Means聚类算法应用原理

    K-Means聚类实际应用 图像分割 商业分析 就业分析 人流量统计分析 1.文档分类器 根据标签、主题和文档内容将文档分为多个不同的种类。这是一个非常标准且经典的K-means算法分类问题。...然后对文档向量进行聚类以识别文档组中的相似性。 2.物品传输优化 使用K-means算法的组合找到无人机最佳发射位置和使用遗传算法来解决旅行商的行车路线问题,优化无人机物品传输过程。...利用以往欺诈性索赔的历史数据,根据它和欺诈性模式聚类的相似性来识别新的索赔。由于保险欺诈可能会对公司造成数百万美元的损失,因此欺诈检测对公司来说至关重要。这是汽车保险中使用聚类来检测欺诈的白皮书。...K-Means算法原理 这里拿Andrew Ng的机器学习教程中的图如下来说明,将其分为两类 人眼很容易看出上下各一堆,共两类 第一步:随机选取两个点,作为聚类中心 第二步:计算每个点到聚类中心的距离...,并分别标记 第三步:可以看出不是理想结果,重新计算聚类中心位置 第四步:聚类中心改变后,重新计算距离,即第二步,再分为两类 第五步:不断重复以上步骤,最终如下 总结:k-means算法是一种无监督学习方法

    51010

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券