首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用随机森林:在121数据集上测试179个分类器

在最近的研究中,这两个算法与近200种其他算法在100多个数据集上的平均值相比较,它们的效果最好。 在这篇文章中,我们将回顾这个研究,并考虑一些测试算法在我们机器学习问题上的应用。...“,并于2014年10月在”机器学习研究杂志 “上发表。 在这里下载PDF。 在本文中,作者通过了121个标准数据集评估了来自UCI机器学习库的 来自17个类别(族)的179个分类器。...UCI机器中的数据集通常是标准化的,但是不足以在原始状态下用于这样的研究。 这已经在“ 关于为分类器准备数据的论述 ” 一文中指出。...在本文中,作者列出了该项目的四个目标: 为选定的数据集合选择全局最佳分类器 根据其准确性对每个分类器和家族进行排序 对于每个分类器,要确定其达到最佳准确度的概率,以及其准确度与最佳准确度之间的差异 要评估改变数据集属性...(复杂性,#模式,#类和#输入)的分类器行为, 研究的作者承认,我们想要解决的实际问题是所有可能问题的一个子集,有效算法的数量不是无限的,而是可以管理的。

2.1K70

用于训练具有跨数据集弱监督的语义分段CNN的数据选择

作者:Panagiotis Meletis,Rob Romijnders,Gijs Dubbelman 摘要:训练用于具有强(每像素)和弱(每边界框)监督的语义分割的卷积网络需要大量弱标记数据。...我们提出了两种在弱监督下选择最相关数据的方法。 第一种方法设计用于在不需要标签的情况下找到视觉上相似的图像,并且基于使用高斯混合模型(GMM)建模图像表示。...作为GMM建模的副产品,我们提供了有关表征数据生成分布的有用见解。 第二种方法旨在寻找具有高对象多样性的图像,并且仅需要边界框标签。...这两种方法都是在自动驾驶的背景下开发的,并且在Cityscapes和Open Images数据集上进行实验。...我们通过将开放图像使用的弱标签图像数量减少100倍,使城市景观最多减少20倍来证明性能提升。

74820
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    基于Keras+CNN的MNIST数据集手写数字分类

    安装教程链接:https://mp.weixin.qq.com/s/MTugq-5AdPGik3yJb9yDJQ 如果没有nvidia显卡,但有visa信用卡,请阅读我的另一篇文章《在谷歌云服务器上搭建深度学习平台...第1个元素是训练集的数据,第2个元素是测试集的数据; 训练集的数据是1个元组,里面包括2个元素,第1个元素是特征矩阵,第2个元素是预测目标值; 测试集的数据是1个元组,里面包括2个元素,第1个元素是特征矩阵...train_X,获取训练集的预测目标值赋值给变量train_y; 第5-7行代码将原始的特征矩阵做数据处理形成模型需要的数据; 第8行代码使用keras中的方法对数字的标签分类做One-Hot编码。...; 第2-4行代码将原始的特征矩阵做数据处理形成模型需要的数据; 第5行代码使用keras中的方法对数字的标签分类做One-Hot编码。...9.总结 1.keras基于tensorflow封装,代码更直观,容易理解; 2.根据本文作者的经验,在MNIST数据集上,基于tensorflow编写代码需要53行代码,基于keras编写代码需要38

    2.4K20

    基于tensorflow+CNN的MNIST数据集手写数字分类预测

    此文在上一篇文章《基于tensorflow+DNN的MNIST数据集手写数字分类预测》的基础上修改模型为卷积神经网络模型,模型准确率从98%提升到99.2% 《基于tensorflow+DNN的MNIST...数据集手写数字分类预测》文章链接:https://www.jianshu.com/p/9a4ae5655ca6 0.编程环境 安装tensorflow命令:pip install tensorflow...://mp.weixin.qq.com/s/MTugq-5AdPGik3yJb9yDJQ 2.下载并解压数据集 MNIST数据集下载链接: https://pan.baidu.com/s/1fPbgMqsEvk2WyM9hy5Em6w...安装教程链接:https://mp.weixin.qq.com/s/MTugq-5AdPGik3yJb9yDJQ 如果没有nvidia显卡,但有visa信用卡,请阅读我的另一篇文章《在谷歌云服务器上搭建深度学习平台...第7行代码表示从测试集中随机选出2000个样本; 第8行代码表示计算模型在训练集上的预测准确率,赋值给变量tran_accuracy; 第9行代码表示计算模型在测试集上的预测准确率,赋值给变量test_accuracy

    2K31

    基于tensorflow、CNN、清华数据集THUCNews的新浪新闻文本分类

    CNN是convolutional neural network的简称,中文叫做卷积神经网络。 文本分类是NLP(自然语言处理)的经典任务。 项目成果如下图所示: ?...使用CNN做文本分类比传统机器学习方法提高precision值0.05,F1score值0.08 因为CNN不需要分词,训练tfidf模型,程序运行时间节省10倍以上。...在谷歌云服务器上搭建深度学习平台》,链接:https://www.jianshu.com/p/893d622d1b5a 3.下载并解压数据集 两种下载方式效果相同: 1.官方数据集下载链接: http...本文前面的第3章下载并解压数据集、第4章获取数据记录了拿到原始数据的处理过程。...image.png 13.总结 1.本文是作者第8个NLP项目,数据共有80多万条。 2.分类模型的评估指标F1score为0.93左右,总体来说这个分类模型比较优秀,能够投入实际应用。

    4.8K32

    深度学习实战-MNIST数据集的二分类

    MNIST数据集:二分类问题 MNIST数据集是一组由美国高中生和人口调查局员工手写的70,000个数字的图片,每张图片上面有代表的数字标记。...本文是对MNIST数据集执行一个二分类的建模 关键词:随机梯度下降、二元分类、混淆矩阵、召回率、精度、性能评估 导入数据 在这里是将一份存放在本地的mat文件的数据导进来: In [1]: import...y_train == 0) # 挑选出5的部分 y_test_0 = (y_test == 0) 随机梯度下降分类器SGD 使用scikit-learn自带的SGDClassifier分类器:能够处理非常大型的数据集...自定义交差验证(优化) 每个折叠由StratifiedKFold执行分层抽样,产生的每个类别中的比例符合原始数据中的比例 每次迭代会创建一个分类器的副本,用训练器对这个副本进行训练,然后测试集进行测试...数据出发,通过SGD建立一个二元分类器,同时利用交叉验证来评估我们的分类器,以及使用不同的指标(精度、召回率、精度/召回率平衡)、ROC曲线等来比较SGD和RandomForestClassifier不同的模型

    82530

    在自己的数据集上训练TensorFlow更快的R-CNN对象检测模型

    检查数据集的健康状况,例如其类平衡,图像大小和长宽比,并确定这些数据可能如何影响要执行的预处理和扩充 可以改善模型性能的各种颜色校正,例如灰度和对比度调整 与表格数据类似,清理和扩充图像数据比模型中的体系结构更改更能改善最终模型的性能...看一下数据集的“运行状况检查 ”: https://public.roboflow.ai/object-detection/bccd/health 可以清楚地看到数据集中存在大量的类不平衡。...训练模型 将训练更快的R-CNN神经网络。更快的R-CNN是一个两阶段的对象检测器:首先,它识别感兴趣的区域,然后将这些区域传递给卷积神经网络。输出的特征图将传递到支持向量机(VSM)进行分类。...使用Faster R-CNN的模型配置文件在训练时包括两种类型的数据增强:随机裁剪以及随机水平和垂直翻转。 模型配置文件的默认批处理大小为12,学习率为0.0004。根据训练结果进行调整。...现在,在生产中使用此模型将引起确定生产环境将是一个问题。例如是要在移动应用程序中,通过远程服务器还是在Raspberry Pi上运行模型?模型的使用方式决定了保存和转换其格式的最佳方法。

    3.6K20

    使用 Transformers 在你自己的数据集上训练文本分类模型

    趁着周末水一文,把最近用 huggingface transformers 训练文本分类模型时遇到的一个小问题说下。 背景 之前只闻 transformers 超厉害超好用,但是没有实际用过。...之前涉及到 bert 类模型都是直接手写或是在别人的基础上修改。但这次由于某些原因,需要快速训练一个简单的文本分类模型。其实这种场景应该挺多的,例如简单的 POC 或是临时测试某些模型。...我的需求很简单:用我们自己的数据集,快速训练一个文本分类模型,验证想法。 我觉得如此简单的一个需求,应该有模板代码。但实际去搜的时候发现,官方文档什么时候变得这么多这么庞大了?...瞬间让我想起了 Pytorch Lightning 那个坑人的同名 API。但可能是时间原因,找了一圈没找到适用于自定义数据集的代码,都是用的官方、预定义的数据集。...数据 假设我们数据的格式如下: 0 第一个句子 1 第二个句子 0 第三个句子 即每一行都是 label sentence 的格式,中间空格分隔。

    2.4K10

    Github项目推荐 | DoodleNet - 用Quickdraw数据集训练的CNN涂鸦分类器

    DoodleNet - 用Quickdraw数据集训练的CNN涂鸦分类器 by yining1023 DoodleNet 是一个涂鸦分类器(CNN),对来自Quickdraw数据集的所有345个类别进行了训练...使用的数据来自Quickdraw数据集。...以下是项目清单: 使用 tf.js 训练涂鸦分类器 训练一个包含345个类的涂鸦分类器 KNN涂鸦分类器 查看网络机器学习第3周了解更多信息以及CNN和迁移学习如何运作。 1....使用tf.js训练涂鸦分类器 我用 tfjs 的 layers API 和 tf.js-vis 在浏览器中训练了一个涂有3个类(领结、棒棒糖、彩虹)的涂鸦分类器。...训练一个包含345个类的涂鸦分类器 DoodleNet 对 Quickdraw 数据集中的345个类别进行了训练,每个类有50k张图片。

    1.5K10

    基于Keras的imdb数据集电影评论情感二分类

    IMDB数据集下载速度慢,可以在我的repo库中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行。 电影评论分类:二分类 二分类可能是机器学习最常解决的问题。...我们将基于评论的内容将电影评论分类:正类和父类。 IMDB数据集 IMDB数据集有5万条来自网络电影数据库的评论;其中2万5千条用来训练,2万5千条用来测试,每个部分正负评论各占50%....划分训练集、测试集的必要性:不能在相同的数据集上对机器学习模型进行测试。因为在训练集上模型表现好并不意味着泛化能力好(在没有见过的数据上仍然表现良好),而我们关心的是模型的泛化能力....因为是二分类问题,网络模型的输出是一个概率,最好使用binary_crossentropy损失函数,也可以使用mean_squared_error均方误差损失函数。...二分类问题,sigmoid标量输出,对应损失函数应该选择binary_crossentropy; rmsprop优化算法大多数情况下是一个很好的选择,无论问题是什么。

    4.2K30

    【深度学习】MLPLeNetAlexNetGoogLeNetResNet在三个不同数据集上的分类效果实践

    本文是深度学习课程的实验报告 使用了MLP/LeNet/AlexNet/GoogLeNet/ResNet五个深度神经网络模型结构和MNIST、Fashion MNIST、HWDB1三个不同的数据集,...本文的数据集和.ipynb文件可在此处下载:https://download.csdn.net/download/qq1198768105/85260780 实验结果 实验结果如下表所示 模型在不同数据集上的准确度...np.array(temp) y_test = np.array(test_labels) return (x_train, y_train), (x_test, y_test) 定义mnist数据装载器...self.num_train_data, batch_size) return self.train_data[index, :], self.train_label[index] 定义fashion_mnist数据装载器...self.num_train_data, batch_size) return self.train_data[index, :], self.train_label[index] 定义HWDB1数据装载器

    1.2K20

    构建没有数据集的辣辣椒分类器,准确性达到96%

    作者 | Michelangiolo Mazzeschi 来源 | Medium 编辑 | 代码医生团队 在没有数据集的情况下使用分类模型。Github存储库中提供了完整的代码。...想构建一个辣味分类器,如果没有任何数据开始,这将是一项艰巨的任务。在互联网上唯一能找到的是一张不同麻辣胡椒的比较表(希望是相同的比例)。 ? 将需要将此数据转换为数字数据。...对于标准差,将使用平均值的10%(这样就不必在Google上搜索每个辛辣胡椒的详细信息)。 创建功能 正在创建一组函数,将允许创建n个数据集,并输入大小。将用100,000个样本制作辣胡椒。...分开的直方图中的高度和宽度 4.创建模型 将使用的模型是朴素贝叶斯分类器。...而不是许多其他模型,该模型专用于以下数据: 是独立的 服从正态分布 因为是按照这些前提建立数据集的,所以该分类器非常适合我要构建的内容。

    1K20

    【目标识别】开源 | Forest R-CNN:实现长尾数据分布的目标识别,LVIS数据集上结果SOTA!

    ,但是用长尾数据分布来检测和分割大量的目标类别仍然是一个具有挑战性的问题,研究较少。...对于一个大词汇量的分类器,得到有噪声日志的概率非常高,这很容易导致错误的识别。...由于构造父类的方法不是唯一的,我们进一步构建多个树来形成一个分类森林,其中每棵树都为fne-grained的分类做出贡献。...本文方法称为Forest R-CNN,可以作为一个即插即用模块,应用于大多数目标识别模型,能够识别1000多个类别。在大词汇表数据集LVIS上进行了广泛的实验。...此外,我们在LVIS数据集上获得了最先进的结果。 主要框架及实验结果 ? ? ? ? ? ? ? ? ? ? ? ? ? 声明:文章来自于网络,仅用于学习分享,版权归原作者所有,侵权请联系删除。

    1.5K30

    如何使用机器学习在一个非常小的数据集上做出预测

    朴素贝叶斯是一系列简单的概率分类器,它基于应用贝叶斯定理,在特征之间具有强或朴素的独立假设。它们是最简单的贝叶斯模型之一,但通过核密度估计,它们可以达到更高的精度水平。...贝叶斯定理在 Udacity 的机器学习入门课程的第 2 课中介绍:- ? 因为我想从课程中得到一些东西,所以我在互联网上进行了搜索,寻找一个适合使用朴素贝叶斯估计器的数据集。...在我的搜索过程中,我找到了一个网球数据集,它非常小,甚至不需要格式化为 csv 文件。 我决定使用 sklearn 的 GaussianNB 模型,因为这是我正在学习的课程中使用的估算器。...然后我使用 sklearn 的 GaussianNB 分类器来训练和测试模型,达到了 77.78% 的准确率:- ? 模型经过训练和拟合后,我在验证集上进行了测试,并达到了 60% 的准确率。...我不得不说,我个人希望获得更高的准确度,所以我在 MultinomialNB 估计器上尝试了数据,它对准确度没有任何影响。 也可以仅对一行数据进行预测。

    1.3K20

    一个真实数据集的完整机器学习解决方案(上)

    在本次的分享中,技术宅将借用国外机器学习大牛的数据,为大家系统的讲解一个针对真实数据集的完整机器学习解决方案,让你碎片化的知识,一文成型。 我们先来看,一个完整的机器学习工程的实现步骤: 1....利用机器学习算法建立模型,该模型可以预测出纽约市建筑物的能源之星评分,而且我们要求实现的模型,即筛选出的影响评分的特征,尽可能具有可解释性。...分组特征 我们可以先用其中的某一个变量对所有的建筑物进行一次分类,再在每个分类中计算该分类的能源之星得分的数据分布。我们可以按类别对密度图进行着色,以查看变量对分布影响。...我们再来看一个纽约市下属不同行政区域对于能源之星得分的影响,从下图可以看出,不同区域对于得分基本上没有区分度,也能说明该变量大概率不是一个好的特征变量。 ?...接下来,我们对本次项目的数据集分两块进行特征工程。第一是对于分类变量,采用独热(one-hot)编码进行分类,转换为数值。独热(one-hot)编码在模型的训练数据中包含分类变量时,应用很常见。

    1.4K10

    UP-DETR 无需人工标注,随机裁剪多个 Query Patch ,并预训练 Transformer 进行目标检测 !

    然而,DETR在训练和优化方面存在挑战,它需要大规模的训练数据集以及即使在COCO数据集[5]上也需要极长的训练时间表。...模型使用预训练的UP-DETR参数进行初始化,并在PASCAL VOC和COCO数据集上对所有参数(包括CNN)进行微调。...表1展示了在PASCAL VOC数据集上的目标检测结果。作者发现DETR在PASCAL VOC上的表现较差,所有指标上都比Faster R-CNN差很多。...此外,它进一步证实了预训练任务(随机 Query Patch 检测)可能会削弱预训练CNN的特征辨别力,而定位和分类具有不同的特征偏好[26],[27],[28]。...对于具有充足训练数据的具有挑战性的COCO数据集,即使经过较长的训练周期,UP-DETR仍然能够超越DETR。 这表明,在目标检测中,不同规模的训练数据都需要预训练的 Transformer 。

    20010

    深层卷积神经网络在路面分类中的应用

    由于深度卷积神经网络(CNN)已成功应用于不同的分类任务,同时也适用于自动驾驶领域,因此使用基于CNN的方法进行路面分类似乎很有希望。 然而,学习分类器的性能很大程度上依赖于训练数据的设计。...训练神经网络用于分类任务的一个挑战是由数据集中过度表示的类(多数类)和代表不足的类(少数类)引起的类不平衡问题:如果单个类支配训练集或单个类仅表示少量样本,分类性能会显著降低[16]。...从上到下:基本数据集,具有从图像搜索扩展的鹅卵石类别和湿沥青类别数据集,具有图像搜索增强的所有类的数据集。绘制所有数据,直到人为使训练终止。...在第一个数据集上训练的ResNet模型在测试数据集上出现了比相应的InceptionV3模型更低的测试精度(80%)。...从左到右:基本数据集,具有从图像搜索扩展的鹅卵石类别和湿沥青类别数据集,具有图像搜索增强的所有类的数据集。 尽管分类器在单帧上运行,但图像是序列的一部分。

    1.7K20

    Rich feature hierarchies for accurate object detection and semantic segmentation

    3.3、训练监督训练:我们在一个大的辅助数据集(ILSVRC2012分类)上对CNN进行了有区别的预训练,只使用图像级注释(此数据不提供bounding box标签)。使用开源的CNN库进行预训练。...除了用一个随机初始化的(N + 1)-way分类层替换CNN特定于imagenet的1000-way分类层(其中N是对象类的数量,加上1作为背景)之外,CNN体系结构没有改变。...目标类分类器:考虑训练一个二进制分类器来检测车辆。很明显,一个紧密包围汽车的图像区域应该是一个正样本。同样,很明显,与汽车无关的背景区域应该是一个负样本。...第一个结果是20.9%,这是R-CNN使用在ILSVRC2012分类数据集上预先训练的CNN所获得的结果(没有微调),并且允许访问val1中的少量训练数据(回想一下,val1中有一半的类有15到55个例子...第一个结果是20.9%,这是R-CNN使用在ILSVRC2012分类数据集上预先训练的CNN所获得的结果(没有微调),并且允许访问val1中的少量训练数据(回想一下,val1中有一半的类有15到55个例子

    1.4K20

    入门 | 一文了解什么是语义分割及常用的语义分割方法有哪些

    数据集和指标 目前有一些常用于训练语义分割模型的数据集: Pascal VOC 2012:有 20 类目标,这些目标包括人类、机动车类以及其他类,可用于目标类别或背景的分割 Cityscapes:50...,即它们之间的依赖关系 (2)红色:对于给定像素的 CNN 原始预测和实际标签之间的依赖关系 每个依赖性关系都具有势能,这是一个关于两个相关随机变量值的函数。...CRF 架构倾向于使用高效的近似技术进行处理。 分类器架构 CNN 分类后跟着 CRF 精炼只是一个可能的语义分割解决方法。...这一步使 CNN 编码器-解码器变得更加鲁棒以抵抗这些形变,并能从更少的训练图像中进行学习。当它在少于 40 张图的生物医学数据集上训练时,IOU 值仍能达到 92%。...他们比较了模型在不同时间尺度的表现:在 Cityscapes 数据集上评估下一帧(短时间)、下一个 0.5 秒(中等时间)和下一个 10 秒(长时间)的表现。

    1.4K70

    DL | 语义分割综述

    数据集和指标 目前有一些常用于训练语义分割模型的数据集: Pascal VOC 2012:有 20 类目标,这些目标包括人类、机动车类以及其他类,可用于目标类别或背景的分割 Cityscapes:50...,即它们之间的依赖关系 (2)红色:对于给定像素的 CNN 原始预测和实际标签之间的依赖关系 每个依赖性关系都具有势能,这是一个关于两个相关随机变量值的函数。...CRF 架构倾向于使用高效的近似技术进行处理。 分类器架构 CNN 分类后跟着 CRF 精炼只是一个可能的语义分割解决方法。...这一步使 CNN 编码器-解码器变得更加鲁棒以抵抗这些形变,并能从更少的训练图像中进行学习。当它在少于 40 张图的生物医学数据集上训练时,IOU 值仍能达到 92%。...L_t 是一个可以捕获预测分割和真实分割之间差异的损失函数 他们比较了模型在不同时间尺度的表现:在 Cityscapes 数据集上评估下一帧(短时间)、下一个 0.5 秒(中等时间)和下一个 10 秒

    99920
    领券