本文介绍了关系网络可视化中的node-link与matrix方法,以及可视化工具Gephi。文章还涉及了可视化中颜色、视觉元素、辅助视角等的应用,并给出了一个实际案例。
Luca Rossi 等人最早讨论了多层网络的可视化策略,他们认为虽然有部分学者逐渐集中到多层网络的研究分析上来,但目前还没有针对这一内容提出专业的可视化方法,而解决当前问题的方案只能依靠传统的方法。
图数据库在反洗钱与智能推荐领域具有广泛的应用潜力。以下将分别阐述图数据库在这两个领域的应用,并讨论其优势和挑战。
RAWGraphs是一个在线的开源工具和数据可视化框架,用来处理Excel表中的数据。你只需将数据导入到RAWGraphs中,设计你想要的图表,然后将其导出为SVG格式或PNG格式的图片。此外,上传至RAWGraphs的数据只会在web端在线进行处理,保证了数据的安全性。
在这个网站,你只需输入一个微博用户的 uid,程序以这个 uid 作为起始 uid,不断递归抓取关系信息,从而构建多级关系网络,而且可以选择是关注网络还是粉丝网络,用户按照认证信息分类,可以很清楚得看到用户关系。
第一步,以一个给定的明星 uid 为起点,爬取它的关注,接着爬关注的关注...从形式上看是一个递归的网络,所以设计了一个递归的爬虫,可以指定抓取指定的层数,断网或其他出错可以从上次爬到的地方继续;一般来说 3 层就非常多,以一个明星关注 100 个明星为例,第一层只有起点明星,第二层有 100 个明星,第三层就有 10000 个明星了,我使用杨幂的 uid 为起点,抓取 3 层网络,实测抓到了 2w+ 明星,20w+ 对明星关注关系,最后随机抽了 5000 条关注关系,2000 余明星。
有了这个网站,你只需输入一个 b 站用户的 uid,或者是直接复制它的个人主页链接,程序以这个 uid 作为起始 uid,不断递归抓取关系信息,从而构建多级关系网络,而且可以选择是关注网络还是粉丝网络,可以很清楚地看到用户关系。
四月开始啦!每个月开头都会逛一逛“统计之都[1]“,因为每月的统计月读[2]更新啦!三月的统计月读有一个内容真的让人心动,而且非常实用!推荐人是:孔令仁,网址链接为:https://www.connectedpapers.com/
进入大数据时代,调查报道愈加成为信息战。从哪里收集有效数据?如何抽取、筛选、整合、分类大量琐碎的信息?如何分享、存储数据,并实现随取随用?钱塘君整理了一张数据收集和处理工具清单,分为八大类,方便实用,各有所长,供大家选择。 ---- 1.全文本搜索和挖掘的搜索引擎: 包括:搜索方法、技术:全文本搜索,信息检索,桌面搜索,企业搜索和分面搜索 开源搜索工具: Open Semantic Search:专门用于搜索自己文件的搜索引擎,同样的还有Open Semantic Desktop Search:可用于搜索单
最近我们被客户要求撰写关于中药专利复方治疗用药规律的研究报告,包括一些图形和统计输出。
复杂系统无处不在。无论是连接城市的庞大道路网络,还是社交媒体平台上错综复杂的社交关系网络,网络在塑造我们的世界中发挥着重要作用。在本文中,我们将探讨复杂系统的概念以及网络是如何成为其运行核心的。
应用关联规则、聚类方法等数据挖掘技术分析治疗抑郁症的中药专利复方组方配伍规律。方法检索治疗抑郁症中药专利复方,排除外用中药及中西药物合用的复方。最近我们被要求撰写关于用药规律的研究报告,包括一些图形和统计输出。对入选的中药专利复方进行术语规范化等处理,抽取信息、建立表,应用数据分析软件R对数据进行关联规则分析,应用网络分析软件进行聚类分析。
这个网站是做什么的呢?简单来说,就提供一个功能,啥也不用配置,只需要输入一个微博 id,就能抓取该微博的多级转发并且构建转发关系网络。
六人定律,相信大家一定都不会陌生。简单的说,你只需要通过6个人,就可以认识到世界上所有的人。足以说明,世界就像一张网,任何事物之间都能找到关系。
从摘要可以看到这篇文章主要内容为:获取中药化学成分与成分作用靶点→疾病作用靶点→构建中药与疾病网络→GO和KEGG富集分析→解析中药作用机制。
中介中心性(Betweeness Centrality),又叫中间中心性,中间性,居间中心性等等。以下是学者们对中介中心性的解释。 中介中心性主要是由美国社会学家林顿·弗里曼(Freeman,1979)教授提出来的一个概念,它测量的是一个点在多大程度上位于图中其他“点对”的“中间”。他认为,如果一个行动者处于多对行动者之间,那么他的度数一般较低,这个相对来说度数比较低的点可能起到重要的“中介”作用,因而处于网络的中心,根据这个思路就可以测量点的中间中心性。[1] 居间中心性建立在以下假设基础上,即一个人如果可把持传播通道的话,则他可能会获得更大的权力。在下图中,节点D很明显处于一个权力位置——节点A、B、C与E、F、G之间所有的信息流通都要通过D。这种传播瓶颈的位置可能是危险的,无论如何——它也可被解释为相当大的压力。居间中心性的另一个重要作用就是它能够分辨出谁是“跨界者”(boundary spanners)——那些在两个或多个团体中扮演着不可或缺的桥梁作用的个体。比如:一个在计算机科学学术世界和音乐世界的跨界者,而我则是在计算机科学方面(获得了博士学位)和长期从事爵士和摇滚伴奏领域的跨界者。[2] 点的中心性是一个用以量化点在网络中地位重要性的图论概念。中间中心性是常用来进行中心性测度的指标,它是指网络中经过某点并连接这两点的最短路径占这两点之间的最短路径线总数之比。
现实世界中充满了网络世界,铁路线路网络、航空网络和人际关系网络。复杂网络是大量真实复杂系统的拓扑关系。在复杂网络分析的帮助下,我们期望将复杂的东西简化,找到隐藏的拓扑关系的新结构,找到节点与节点之间的规律,同时将数据可视化。本文中我们被要求对上海公交路线进行可视化。
导读:如今,大数据日益成为研究行业的重要研究目标。面对其高数据量、多维度与异构化的特点,以及分析方法思路的扩展,传统统计工具已经难以应对。工欲善其事,必先利其器。众多新的软件分析工具作为深入大数据洞察
如今,大数据日益成为研究行业的重要研究目标。面对其高数据量、多维度与异构化的特点,以及分析方法思路的扩展,传统统计工具已经难以应对。
如今,大数据日益成为研究行业的重要研究目标。面对其高数据量、多维度与异构化的特点,以及分析方法思路的扩展,传统统计工具已经难以应对。 工欲善其事,必先利其器。众多新的软件分析工具作为深入大数据洞察研
导读:如今,大数据日益成为研究行业的重要研究目标。面对其高数据量、多维度与异构化的特点,以及分析方法思路的扩展,传统统计工具已经难以应对。 工欲善其事,必先利其器。众多新的软件分析工具作为深入大数据洞察研究的重要助力, 也成为数据科学家所必须掌握的知识技能。 上期回顾:【大咖说】张瑞敏:互联网工业变革之路的海尔实践 【基础篇】 1传统分析/商业统计 Excel、SPSS、SAS 这三者对于研究人员而言并不陌生。 ◆ Excel 作为电子表格软件,适合简单统计(分组/求和等)需求,由于其方便好用,功能
作者:大数据平台部 马亮 如今,大数据日益成为研究行业的重要研究目标。面对其高数据量、多维度与异构化的特点,以及分析方法思路的扩展,传统统计工具已经难以应对。 工欲善其事,必先利其器。众多新的软件分
图数据库是一种用于存储和查询图结构数据的数据库管理系统,它可以有效地处理复杂的关系网络。在识别最终受益人方面,图数据库可以发挥重要作用。下面是其应用原理的描述:
最近有个学生问我,如何绘制交互式社会网络图(Interactive Social Network Graph)?
来源:AI前线 本文约3500字,建议阅读7分钟 本文为你介绍图数据库作为复杂关系网络分析的一个强有力的工具在微财风控系统中的探索和应用。 近年来随着监管力度的不断提升,金融机构业务的不断发展,交易方式越发便利的背景下。客户、账务、资金等关系也越发复杂,黑产也更加隐蔽,对内部风控要求也在不断加强。传统的关系型数据库在这种复杂的关系网络上发挥的效果越发有限,在多维度的查询上很难在合理的时间内返回结果。图数据库作为复杂关系网络分析的一个强有力的工具,如何高效的发挥其在高性能、高扩展、高稳定性方面的能力,显得至
在数据可视化领域,关系网图是一种强大的工具,可以展示实体之间的复杂关系。Pyecharts 是一个基于 Echarts 的 Python 可视化库,提供了简单而强大的接口,使得绘制关系网图变得轻松而愉快。本文将介绍 Pyecharts 绘制多种炫酷关系网图的参数说明,并通过代码实战演示如何创建令人印象深刻的关系网图。
作者 | 俊欣 来源 | 关于数据分析与可视化 我们平常都会使用很多的社交媒体,有微信、微博、抖音等等,例如在微博上面,我们会关注某些KOL,同时自己身边的亲朋好友等等也会来关注我们自己,成为我们自己的粉丝。而慢慢地随着粉丝的量不断累积,这层关系网络也会不断地壮大,很多信息也是通过这样的关系网络不断地向外传播,分析这些社交网络并且了解透彻它对于我们做出各项商业决策来说也是至关重要的,今天小编就用一些Python的第三方库来进行社交网络的可视化 数据来源 小编用的数据是来自领英当中的社交数据,由于小编之前
建议查看原文:https://mp.weixin.qq.com/s/nURcYKN6vRBKjbMXAUbEng
大数据文摘作品 作者:Peter Gleeson 编译:周佳玉、丁慧、叶一、小鱼、钱天培 今天文摘菌要教大家制作一张编程语言的关系网络图。如果不知道什么是关系网络图,可以点击下方链接先来看一下最终成果: http://programming-languages.herokuapp.com/#, 我们可以在这里看到从过去到现在的250多种编程语言之间的“设计影响”的关系,下面是该演示的截图: 接下来,就让我们一起来学做这个关系网络图吧! 在当今的超连接世界,网络在现代生活中无处不在。举个栗子,文摘菌的周末这
关于clusterProfiler这个R包就不介绍了,网红教授宣传得很成功,功能也比较强大,主要是做GO和KEGG的功能富集及其可视化。简单总结下用法,以后用时可直接找来用。
在当今数据驱动的世界里,数据的可视化变得越来越重要。特别是在网络分析领域,将复杂的关系网络转换为直观的图形表示,对于理解和传达信息至关重要。在众多的数据可视化工具中,Python的Pyvis库以其简单性和强大的功能脱颖而出。
导读 知识图谱 (Knowledge Graph) 是当前的研究热点。自从2012年Google推出自己第一版知识图谱以来,它在学术界和工业界掀起了一股热潮。各大互联网企业在之后的短短一年内纷纷推出了自己的知识图谱产品以作为回应。比如在国内,互联网巨头百度和搜狗分别推出”知心“和”知立方”来改进其搜索质量。那么与这些传统的互联网公司相比,对处于当今风口浪尖上的行业 - 互联网金融, 知识图谱可以有哪方面的应用呢? 目录 1. 什么是知识图谱? 2. 知识图谱的表示 3. 知识图谱的存储 4.
目前,生信文章常常不再局限于单一组学分析,而是将基因表达与非编码RNA、突变、甲基化、CNV、临床数据进行整合分析,多组学分析已然成为生信分析的主流趋势。今天,为大家分享一个近期发表在“核酸”杂志上的神器——DriverDBv3,也是一个可以一站式解决肿瘤多组学分析的“炫酷”神器!
目前公众号平台改变了推送机制,点“赞”、点“在看”、添加过“星标”的同学,都会优先接收到我的文章推送,所以大家读完文章后,记得点一下“在看”和“赞”。
不同于图像、自然语言这种欧式空间的数据,网络结构的数据——图,通常无法通过CNN或者RNN来处理,这就需要我们寻找其他的方法来处理图数据。图数据其实非常常见,例如社交网络关系、分子结构、论文互相引用的关系网络等等,所以如何表达网络节点的特征就十分重要,表达好了节点的特征,我们就可以用它做下游的分类、预测、聚类、可视化等等任务。
作者:李文哲 摘自:普惠大数据中心 导读 知识图谱 (Knowledge Graph) 是当前的研究热点。自从2012年Google推出自己第一版知识图谱以来,它在学术界和工业界掀起了一股热潮。各大互联网企业在之后的短短一年内纷纷推出了自己的知识图谱产品以作为回应。比如在国内,互联网巨头百度和搜狗分别推出”知心“和”知立方”来改进其搜索质量。那么与这些传统的互联网公司相比,对处于当今风口浪尖上的行业 - 互联网金融, 知识图谱可以有哪方面的应用呢? 目录 1. 什么是知识图谱? 2. 知识图谱的表示
近几年,随着大数据产业的蓬勃发展,数据可视化大屏在各行各业中的应用越来越广泛,教育、医疗、政务、交通运输、能源等等,到处都能看到数据可视化大屏的身影。大面积、炫酷动效、丰富色彩是可视化大屏最为显著的特点,大屏易在观感上给人留下震撼印象,便于营造某些独特氛围、打造仪式感。大屏数据可视化目前主要有信息展示、数据分析及监控预警三大类。下面我们来看看5个经典的数据可视化大屏应用案例。
面向垂直行业,结合专家知识、多源异构的碎片化知识和组织智能,引领从大数据分析到大知识工程进而大智慧系统的研发和落地应用。构建行业知识图谱,实现智能推理与知识服务,推进多机多人多任务的人机协同,开发新一代知识工程的技术体系和系统平台,服务搜索、推荐、规划、对话机器人等领域的情景感知和人机协同。
2019年度腾讯 “犀牛鸟精英人才培养计划”开放申请中,该项目是一项面向学生的校企联合人才培养项目,为期一年。入选学生将受到业界顶尖技术团队与高校导师的联合指导及培养,并获得3个月以上带薪到访腾讯开展科研的机会,基于真实产业问题及海量数据,验证学术理论、加速成果应用转化、开阔研究视野。同时项目组将引进沟通技巧、商业分析、创新思维等定制课程,全面提升学生综合素质。 今年共有10大方向,81个子课题 申报截止日期:2019年1月28日 申报截止倒计时10天 同学们,抓紧时间申报哦 下面让我们一起来
我所使用的Gephi版本为0.9.2。网上很多关于动态网络的绘制基本很难实现,下面的方式都是实践总结出来的。
作为一个前端,说到可视化除了听过 D3.js 的大名,常见的可视化库还有 ECharts、Chart.js,这两个库功能也很强大,但是有一个共同特点是封装层次高,留给开发者可设计和控制的部分太少。和 EChart、Chart.js 等相比,D3.js** 的相对来说自由度会高很多,得益于 D3.js 中的 SVG 画图对事件处理器的支持**,D3.js 可将任意数据绑定到文档对象模型(DOM)上,也可以直接操作对象模型(DOM)完成 W3C DOM API 相关操作,对于想要展示自己设计图形的开发者,D3.js 绝对是一个不错的选择。
今天为大家介绍一个能够查询最新期刊信息的网站,方便大家了解期刊质量及审稿周期,同时也能在投稿阶段为筛选期刊提供便利。类似的文章还有:easyScholar 帮你高效科研;科研分享|一个论文关系网络可视化网站;如何复现大佬论文的代码?。
想象一下你正在看一部恐怖电影:女主角正高度警惕地穿过黑暗的地下室,背景音乐令人毛骨悚然,而一些看不见的生物在阴影中爬行…… 然后——砰!它打翻了一个物体。
图是信息科学中最常用的一类抽象数据结构,能够直观的表达现实世界中对象之间的真实关系。许多重要应用都需要用图结构表示,传统应用如最优运输路线的确定、疾病爆发路径的预测、科技文献的引用关系等;新兴应用如社交网络分析、语义 Web 分析、生物信息网络分析等,与图相关的处理和应用几乎无所不在 [1] 。
导语:最近两年,自注意力机制、图和关系网络等模型在NLP领域刮起了一阵旋风,基于这些模型的Transformer、BERT、MASS等框架已逐渐成为NLP的主流方法。这些模型在计算机视觉领域是否能同样有用呢?近日,微软亚洲研究院视觉计算组主管研究员胡瀚受邀参加VALSE Webinar,分享了他们最近的一些相关工作。他们的研究以及同期的一些其它工作表明这些模型也能广泛地用于视觉基本元素之间关系的建模,包括物体与物体间、物体与像素间、以及像素与像素间的关系,特别是在建模像素与像素间关系上,既能与卷积操作形成互补,甚至有望能取代卷积操作,实现最基本的图像特征提取。
Echarts是一个基于JavaScript的开源可视化图表库,由百度开发和维护。它提供了多种类型的图表,包括折线图、柱状图、散点图、饼图、地图等,可以用于展示各种类型的数据。Echarts具有良好的交互性和可扩展性,可以通过自定义主题和图表样式来满足不同的需求。同时,Echarts还支持移动端和桌面端的多种平台,可以在不同的设备上进行数据可视化展示。
R语言能挖掘、整理数据,网络图可以呈现故事脉络,两者各显神通。深度君精选数据网站FiveThirtyEight的R语言应用心得,数据新闻网络图叙事的类型,还可参考《处理数据、制作可视化:数据记者利器推荐》。 1.了解五大优势,巧用R做数据新闻 FiveThirtyEight是专注于做民意调查分析、政经新闻和体育报道的数据新闻网站,由数据分析师Nate Silver 于2008年建立,属于娱乐与体育节目电视网 ESPN。其优秀作品包括Uber对纽约交通的影响探究, 恐怖事件发生频率分析等。他们做数据作品的利器
今天我演讲的题目是“发现数据可视化之美”,前一段时间我写过一本书,里面有这样一段话,我说这是一个让我们兴奋的时代,数据科学让我们越来越多地从数据中观察到人类社会的复杂行为模式,以数据为基础的技术决定着人类的未来,但并非是数据本身改变了我们的世界,起决定作用的是我们可用的知识。《大数据时代》这本书,核心观点是说大数据是工作、生活和思维方式的改变。 这是一个非常有名的一张图片,这张图片后面是全球的世界地图。当有人发一个推特的时候它就有一个点,当越来越多的点出来以后,我们立刻就感知了,好像中国这块一片黑,说明我
领取专属 10元无门槛券
手把手带您无忧上云