首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

关于精确度和召回率

精确度和召回率是评估信息检索、机器学习和数据挖掘等任务中模型性能的重要指标。

  1. 精确度(Precision):精确度是指在所有被模型预测为正例的样本中,实际为正例的比例。即预测为正例且实际为正例的样本数除以预测为正例的样本总数。精确度高表示模型预测的正例中有较少的假阳性。
  2. 召回率(Recall):召回率是指在所有实际为正例的样本中,被模型正确预测为正例的比例。即预测为正例且实际为正例的样本数除以实际为正例的样本总数。召回率高表示模型能够较好地捕捉到正例。

精确度和召回率通常是相互影响的,提高精确度可能会降低召回率,反之亦然。因此,在不同的应用场景中需要根据具体需求来权衡精确度和召回率的重要性。

在信息检索领域,例如搜索引擎,精确度和召回率的平衡非常重要。高精确度可以确保搜索结果的质量,而高召回率可以确保尽可能多的相关结果被返回给用户。

在机器学习和数据挖掘任务中,精确度和召回率的选择取决于任务的特点。例如,在垃圾邮件过滤任务中,精确度更重要,因为将正常邮件误判为垃圾邮件可能会导致用户错过重要信息。而在癌症检测任务中,召回率更重要,因为漏诊可能会导致病情进一步恶化。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云机器学习平台(https://cloud.tencent.com/product/tcml)
  • 腾讯云数据挖掘平台(https://cloud.tencent.com/product/tcdm)

请注意,以上仅为示例,实际上还有许多其他腾讯云产品可用于支持精确度和召回率相关的任务。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 一文让你了解AI产品的测试 评价人工智能算法模型的几个重要指标

    如何测试人工智能产品越来越受到广大测试工程师的关注,由于人工智能的测试预言(Test Oracle)不是像普通软件产品那么明确,到目前为止,基于大数据的第四代人工智能产品的测试,主要集中在“对大数据测试”“白盒测试”“基于样本分析算法的优劣”以及“对最终产品的验收测试”。“对大数据测试”主要针对数据阶段验证、对数据计算验证和对输出阶段验证;“白盒测试”主要考虑神经元覆盖(Neuron Coverage)、阈值覆盖率(Threshold Coverage)、符号变更率(Sign Change Coverage)、值变更覆盖率(Value Change Coverage)、符号-符号覆盖率(Sign-SignCoverage)和层覆盖(LayerCoverage)这六个指标;“对最终产品的验收测试”可以采用对传统软件验收测试的方法,基于业务来进行测试,比如对于人脸识别系统,是否可以在各个人脸角度变化,光线等条件下正确识别人脸。本文重点讨论的是“基于样本分析算法的优劣”。

    02

    X射线图像中的目标检测

    每天有数百万人乘坐地铁、民航飞机等公共交通工具,因此行李的安全检测将保护公共场所免受恐怖主义等影响,在安全防范中扮演着重要角色。但随着城市人口的增长,使用公共交通工具的人数逐渐增多,在获得便利的同时带来很大的不安全性,因此设计一种可以帮助加快安全检查过程并提高其效率的系统非常重要。卷积神经网络等深度学习算法不断发展,也在各种不同领域(例如机器翻译和图像处理)发挥了很大作用,而目标检测作为一项基本的计算机视觉问题,能为图像和视频理解提供有价值的信息,并与图像分类、机器人技术、人脸识别和自动驾驶等相关。在本项目中,我们将一起探索几个基于深度学习的目标检测模型,以对X射线图像中的违禁物体进行定位和分类为基础,并比较这几个模型在不同指标上的表现。

    02

    每日论文速递 | DeepMind提出SAFE,用LLM Agent作为事实评估器

    摘要:大语言模型(LLM)在回答开放式话题的事实搜索提示时,经常会生成包含事实错误的内容。为了对模型在开放域中的长式事实性进行基准测试,我们首先使用 GPT-4 生成了 LongFact,这是一个由跨越 38 个主题的数千个问题组成的提示集。然后,我们提出可以通过一种我们称之为 "搜索增强事实性评估器"(Search-Augmented Factuality Evaluator,SAFE)的方法,将 LLM 代理用作长式事实性的自动评估器。SAFE 利用 LLM 将长式回复分解为一组单独的事实,并通过一个多步骤推理过程来评估每个事实的准确性,该过程包括向谷歌搜索发送搜索查询,并确定搜索结果是否支持某个事实。此外,我们还建议将 F1 分数扩展为长表事实性的综合指标。为此,我们平衡了回复中支持事实的百分比(精确度)和所提供事实相对于代表用户首选回复长度的超参数的百分比(召回率)。根据经验,我们证明了 LLM 代理可以实现超人的评级性能--在一组约 16k 的单个事实上,SAFE 与众包人类注释者的一致率为 72%,而在 100 个分歧案例的随机子集上,SAFE 的胜率为 76%。同时,SAFE 的成本比人类注释者低 20 多倍。我们还在 LongFact 上对四个模型系列(Gemini、GPT、Claude 和 PaLM-2)的 13 个语言模型进行了基准测试,发现较大的语言模型通常能获得更好的长格式事实性。LongFact、SAFE 和所有实验代码开源。

    01
    领券