首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    【犀牛鸟·硬核】CIKM 2020|腾讯广告与清华大学联合提出高质量负实例生成新方法

    本文转自“腾讯广告算法大赛” CCF-腾讯犀牛鸟基金由中国计算机学会(简称CCF)和腾讯公司联合发起,致力于面向海内外青年学者搭建产学研合作及学术交流的平台。8年来犀牛鸟基金向全球范围内最具创新力的青年学者提供了解产业真实问题,接触业务实际需求的机会,并通过连接青年学者与企业研发团队的产学科研合作,推动双方学术影响力的提升及应用成果的落地,为科技自主研发的探索和创新储备能量。 基于CCF-腾讯犀牛鸟基金的平台支持,腾讯广告与清华大学李勇老师团队围绕分布式大规模推荐算法开展了深入的合作研究。双方最新的合作成

    03

    开源| RangeNet++实时3D点云分割 | 在Jetson AGX上达到实时,性能优于SqueezeSegV2-CRF

    自动驾驶领域的环境感知通常是通过融合多个不同的传感器数据完成的。当前有很多标注过的开源RGB图像数据,同时出现了很多基于这些图像的识别算法。尤其是当前能够取得很好效果的高精度语义感知任务,通常是使用高分辨率相机完成的。这就使得,使用其他传感器的算法被大家所忽略。本文提出了一个表现SOTA使用纯激光数据的语义分割算法,以便为车辆提供另一个独立的语义信息源。本文的算法可以准确的分割完整的激光点云数据,可以达到激光的输出频率。本文为了使用传统的CNN网络,将原始的旋转式激光数据转换成深度图表示形式。为了获得精确的处理结果,本文提出了一种新颖的后处理算法,可有效的改善上面所述的深度图表示方法中存在的数据离散性问题和CNN输出结果模糊的问题。与当前表现SOTA的一些算法在实时性和准确性上进行了比较。实验结果显示本文的算法在单个嵌入式的GPU上仍在可以达到实时的效果,并且性能表现SOTA。

    02

    【Research】Explore ChestX-ray Dataset

    肺部疾病是威胁现代人健康的重要疾病之一,如何使用快速且廉价的方法对肺病进行诊断是医学界的重要课题。 随着深度学习方法的兴起,世界各地越来越多的研究员在尝试用深度神经网络模型对医学图像进行分析、解释,获得可靠的诊断结果。 目前规模最大的肺部X光数据库ChestX-ray14 是由NIH研究院提供的,该数据库包含 14 种肺部疾病(肺不张、变实、浸润、气胸、水肿、肺气肿、纤维变性、积液、肺炎、胸膜增厚、心脏肥大、结节、肿块和疝气)的 10 多万张 X光前视图(约42G),研究人员对数据采用NLP方法对图像进行标注,1-14类分别对应14种肺部疾病,第15类表示未发现疾病。据称,该数据库标注准确率超过90%。

    04

    悉尼大学推光子计算机核心技术,未来其运行速度将至少快出20倍 | 内送AR卡片

    利用声光子间特有性质,悉尼大学研究团队研制出光子芯片存储和传输技术。 量子计算机想要成为现实,其中的一大难点就在于如何实现对量子的操纵。最近集成电路中相干声振动声子的控制和操纵引起了极大的关注,因为声子可以作为射频和光信号之间的链接,为量子之间的通信提供通道,并且它是一种先进的信号处理方式。 早前,已经存在基于光的操作,实现对光的存储,但是受限于带宽限制,真正达到对光子的处理一直没有实现。 近日,在《自然通讯》杂志上的一篇文章详细描述了澳大利亚悉尼大学的研究团队所做的工作,在这项工作中,他们演示了具有千兆赫

    00
    领券