我接触过很多设计小伙伴都一个共同的特点,如果说某个概念大家也都能讨论几句,但是落实到具体工作中就不知道如何去运用了,或许这个是教育体制下的一个通病。
当下,我们都处于一个信息爆炸的时代,在我们熟知的互联网中每个人也留下了属于自己的影子。如果说网络是一面镜子,那么网络背后的我们每个人都有一副属于自己的面孔,今天就让我们通过用户画像来了解网络背后的“我”和“你”。
作者 CDA 数据分析师 背景 刘路老师之前主要是做政府数据分析,目前主要服务企业。他认为政府和企业的数据分析没有本质区别,都是有目的的进行收集、整理、加工和分析数据,提炼有价值信息的过程,都是为
前段时间做可一些用户画像方面的工作,对用户画像技术有了初步了解。如果你是一个对大数据和用户画像技术完全不了解的小白,希望这篇文章可以提供一点帮助。
导读:产品研发团队犯的常见错误之一是对用户没有足够的了解,就开始提需求或设计产品。在收集到大量用户信息后,产品研发团队需要通过这些信息创建目标用户的画像,以便更深入地了解用户,进而实现以用户为中心设计产品。
我们在对一个网站流量进行分析时,转化率往往是我们最为关心的,因为我们做SEO的目的就是为了转化,而达到网站营销的目的,但一些网站的转化率并不高,一般我们认为,网站的展现点击比是网站转化的前提,所以我们应该不断的提高网站流量的展点比,继而提纯流量的纯度最终才可以进一步提高网站转化率。
原作者:王建军 前一篇粗略的介绍了建立用户画像的过程,连载二更进一步,以时尚杂志全媒体为业务原型,把抽象的文字描述实例化,从战略目的分析、如何建立用户画像体系、怎么对标签进行分类分层级三个不同角度来说说用户画像建立的过程。梳理标签体系是实现用户画像过程中最基础、也是最核心的工作,后续的建模、数据仓库搭建都会依赖于标签体系。
分享一个B2B用户画像的做法。网上流传的资料大多是B2C相关的,导致在B2B企业的同学很困惑:”老师,说是RFM模型,可我们的客户都是n久没有一张单,一张订单几百万,怎么个RFM法呢?“是滴,有这种困惑,就初步领略到了B2B业务的蛋疼之处。开局一首诗,大家体会下B2B各种无奈。
用户画像,大数据时代老生常谈且又长久不衰的话题,公司都在搞,文章满天飞,在这个人人都喊“数据驱动业务”的时代,你不懂用户画像,不搞用户画像,你都不好意思跟别人聊(chui)业(niu)务(pi)。
做推荐系统的时,我们需要了解我们的用户,也就是说需要对用户的基本情况、基本喜好有个了解。
“用户画像”这个说法现在是在数据分析和数据挖掘领域是很流行的。 这个说法比较形象,它是指我们在数据库或数据仓库里使用用户信息的记录,对这些信息逐渐丰富以后完成对用户的描述。整个描述的过程就像给用户画像一样,因为我们平时在绘画中说的画肖像画一样,一笔一笔照着模特画,最后完成对模特样子的描述。 我们希望对用户做“画像”的目的也是比较明确的,就是我们希望通过某些手段对用户做甄别,把他们分成彼此相同或不同的人群或个体,进而区别化提供服务和进行观察分析——这通常是做用户画像的核心目的所在。 在数据库或者数据仓库里怎
导读:阅文作为国内最大的网络文学公司,我们在实践过程中,总结了一套适合自身业务特点的用户画像方法论,及实践经验。本文将介绍为什么需要用户画像,以及如何做用户画像,并结合在阅文场景下所面临的问题,为大家分享下我们在用户画像上的探索与实践。
用户画像,作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,用户画像在各领域得到了广泛的应用。用户画像最初是在电商领域得到应用的,尤其在数字化营销范畴之内,核心的依赖依据就是描述用户画像的丰富标签。
各种各样的数据,如果只是躺在数仓里面,并不会发挥更大的业务价值,只有数据产品化之后才能便于业务方使用,这也是数据平台的价值,需要每一位数据平台的小伙伴为之努力。
互联网广告投放的精准度,本质是一种匹配度。它不可能实现把广告内容一对一地精确投放给用户个体,而只是尽可能将广告展示给与广告内容匹配度更高的用户群体。广告投放的精准,离不开技术的支撑,但不同的技术却可能给个人信息带来不同程度的风险。在后GDPR时代,对于互联网企业而言,保护好用户的个人信息,不仅是一个合规问题,更是一个能在行业中保持优势地位的核心竞争力。为此,在适用知情同意原则上,我们应针对不同的精准广告投放技术,调整其侧重点。
前几天,有个搞运营的小伙伴向我吐槽,熬了几个夜做出来的用户画像被老板说垃圾。不管是市场人员、运营人员还是产品经理,都躲不开“用户画像”,但经常听到伙伴们抱怨,这个词太大了,根本不知道从哪里下手。 老李给大家归纳了一套用户画像学习方法,从理论到实践,教大家怎么做好用户画像。 ◆ 什么是用户画像? 简单来说,用户画像=给用户打标签。举个例子,如果你关注老李的头条,每天看的都是数据分析类的内容,那你就会被打上“数据分析”、“职场”等标签,下次打开头条,给你推荐的就是“如何转行数据分析”、“数据分析必备工具”等文章
用户画像作为“大数据”的核心组成部分,在众多互联网公司中一直有其独特的地位。 作为国内旅游OTA的领头羊,携程也有着完善的用户画像平台体系。目前用户画像广泛用于个性化推荐,猜你喜欢等;针对旅游市场,携程更将其应用于“房型排序”“机票排序”“客服投诉”等诸多特色领域。本文将从目的,架构、组成等几方面,带你了解携程在该领域的实践。 1.携程为什么做用户画像 首先,先分享一下携程用户画像的初衷。一般来说,推荐算法基于两个原理“根据人的喜好推荐对应的产品”“推荐和目标客人特征相似客人喜好的产品”。而这两条都离不开用
写在前面 对于战略制定和产品设计而言,收集各种各样的用户数据是非常有价值的,但有时候你会忽略统计数字背后所代表的真正人物。 因此,通过创建用户画像,你可以让你的用户变得更加真实。用户画像是能代表整个真实用户需求的虚构人物。通过赋予一张人物的面孔和名字,你将用户调查及用户细分过程中得到的分散资料重新关联起来,用户画像可以帮助你确保在整个设计过程期间把用户始终放在心里。 本文从用户画像的概念、建立画像的重要性、以及如何建立用户画像三大方面,和大家一起浅谈心得。类似的文章有很多,我按照一般人比较容易理解和接受
1、用户画像:用户画像产生的原因、用户画像概述、用户画像构成原则、第一类用户画像、第二类用户画像 参考:什么是用户画像?如何构建用户画像? 企业为什么要绘制用户画像?谈谈用户画像的真正作用 干货丨用户画像,没你想的那么简单!
引言:本文分享了7种数字营销策略的清单,营销人员可以通过这些策略来帮助他们的团队和业务发展,同时我们还制定了关于数字策略和营销活动的速成课程。 翻译 | 陈明艳 编辑 | Rachel 毫无疑问,在现代化的市场环境中,营销策略的很大一部分都是数字化的。消费者和企业几乎都是在线的——你希望能够接触到他们,并观察他们的用户行为,分析他们在哪里花费的时间最多。 但当你在发展一项业务时,其不断发展的市场规模很快就变得势不可挡,而且任务繁重,在这种情况下,你该如何创建、优化和保持敏捷的数字营销策略呢? 我们编制了7种
用户画像是指根据用户的属性、用户偏好、生活习惯、用户行为等信息而抽象出来的标签化用户模型。通俗说就是给用户打标签,而标签是通过对用户信息分析而来的高度精炼的特征标识。通过打标签可以利用一些高度概括、容易理解的特征来描述用户,可以让人更容易理解用户,并且可以方便计算机处理。
作为世界最大的生活服务平台,我们同样也希望用户知道“58就在那儿!”。要做到这一点,我们首先就需要具有对用户洞若观火、明察秋毫的能力,而58用户画像的建设就是以此为目标的。
用户画像是指我们产品或服务的核心用户具有代表性的一些共性特征。它是一个虚拟的用户,画出这些特征的目的有两个
用户画像最初的意义,在于帮助企业找寻目标用户,明确出他们的喜好与厌恶,从而优化产品功能与服务,最终创造出更多的商业与社会价值。
乔巴:公司领导让我规划用户画像体系,我之前从没做过,现在感觉就像丈二和尚摸不着头脑。用户画像体系规划是怎样的?整个画像体系有哪些模块?在实施过程中先做哪些,后做哪些?需要哪些人来参与,协作流程是怎样的?有没有一些模板可以套用?
有同学问:陈老师,我领导让我做用户画像分析,可是我做了一大堆数据,却被批:也没分析什么东西啊?该咋办?今天系统解答一下。
我们经常在淘宝上购物, 作为淘宝方, 他们肯定想知道他的使用用户是什么样的, 是什么样的年龄性别, 城市, 收入, 他的购物品牌偏好, 购物类型, 平时的活跃程度是什么样的, 这样的一个用户描述就是用户画像分析。
首先看一下大数据与应用画像的关系,现在大数据是炙手可热,相信大家对大数据的四个V都非常了解,大数据应该说是 信息技术的自然延伸,意味着无所不在的数据。 我们先看下数据地位发生转变的历史,在传统的IT
最近在工作之余,结合自己的理解和论坛上的一些帖子,整理了份用户画像的文章,个人觉得这篇文章在宏观上很好地描述了用户画像的主要内容。(文章内的图片来源于不同帖子,权当分享,侵删)
image.png 从本篇开始,介绍下敏捷工具和技术中常用工具和方法。 在产品的其实阶段,包中你的产品是被客户强烈需要的,那么你就迈向了产品成功的第一步,如何能准确的定位到
用户画像的核心在于给用户“打标签”,每一个标签通常是人为规定的特征标识,用高度精炼的特征描述一类人,例如年龄、性别、兴趣偏好等,不同的标签通过结构化的数据体系整合,就可与组合出不同的用户画像。
用户画像说简单点就是要你虚构出一个产品的用户,设定用户性别、年龄、收入、家庭等基本情况进行场景模拟。通过用户画像,我们可以将产品用户具体化、形象化,从而更好地理解产品用户,设计出更加符合用户需求的产品。 那么用户画像怎么做?
<数据猿导读> 对于大众来说,进入移动互联网时代以后,自然已无法离开WIFI和APP。殊不知,专家表示,这些工具正在“暴露”你的身份。别慌。对于企业来说,正是基于你的手机数据信息,才能了解你,从而为你
写在前面 本篇内容来源于网络,因为工作需要,所以就去网上查找资料,顺便整理一下分享给大家,小红自己也是在学习阶段, 做这个公众号的目的也是为了输出自己学习的内容,一方面是为了自己更好的学习,另一方面希
省略掉预处理设计的过程,画像校验的步骤主要集中在画像开发,画像上线,画像更新中,并且三个阶段中,每个阶段的校验方式完全不同
【导读】2017年 11月4日,大数据系统与应用研讨会在中科院计算所举行。会议邀请了中科院计算所程学旗老师和其他来自联想、京东、美团点评、小米等一线互联网公司大数据领域的专家,通过主题演讲,分享并深度探讨了大数据技术在业界一线的最佳实践和创新应用。 小米大数据总监司马云瑞为大会带来了题为《小米用户画像的演进及应用》的分享报告,循序渐进地分享了小米用户画像系统的建设和应用。小米公司经过7年的发展,积累了海量的日志和用户行为数据。基于全生态、多维度的数据资产,构建了丰富的用户画像体系,在业务运营、广告、互联网
过年时,闲来无聊,便想起年前和啊喔科技的的朋友聊到过“不写就出局”用户活跃度的话题,大家共同讲起了需要建立产品的用户画像。去年十月,雨花客厅程冲老师在产品课程上也讲过用户调研和分析方法。这两天想梳理出来所学所思:用户画像到底是什么?该如何创建用户画像?用户画像到底有什么作用?
用户画像的核心在于给用户“打标签”,每一个标签通常是人为规定的特征标识,用高度精炼的特征描述一类人,例如年龄、性别、兴趣偏好等,不同的标签通过结构化的数据体系整合,就可与组合出不同的用户画像。
精准营销,如何构建一套完善的用户画像体系?
移动互联网时代,精细化运营逐渐成为企业发展的重要竞争力,“用户画像”的概念也应运而生。用户画像是指,在大数据时代,企业通过对海量数据信息进行清洗、聚类、分析,将数据抽象成标签,再利用这些标签将用户形象具体化的过程。用户画像的建立能够帮助企业更好地为用户提供针对性的服务。
最近入手了一个用户画像的项目,这里面真的“坑”满多的,你肯定很想问,不就是用户画像嘛,会这么烦吗?现在可能就需要拆分成几个问题来做这个项目。
在产品研发过程中,确定明确的目标用户至关重要。不同类型的用户往往有不同甚至相冲突的需求,我们不可能做出一个满足所有用户的产品。 为了让团队成员在研发过程中能够抛开个人喜好,将焦点关注在目标用户的动机和行为上,Alan Cooper提出了Persona这一概念。“赢在用户”这本书将其翻译为“人物角色”,在腾讯我们习惯了使用“用户画像”这个术语。表达的意思一样,是真实用户的虚拟代表,是在深刻理解真实数据的基础上得出的一个的虚拟用户。我们通过调研去了解用户,根据他们的目标、行为和观点的差异,将他们区分为不
写在前面: 博主是一名大数据的初学者,昵称来源于《爱丽丝梦游仙境》中的Alice和自己的昵称。作为一名互联网小白,写博客一方面是为了记录自己的学习历程,一方面是希望能够帮助到很多和自己一样处于起步阶段的萌新。由于水平有限,博客中难免会有一些错误,有纰漏之处恳请各位大佬不吝赐教!个人小站:http://alices.ibilibili.xyz/ , 博客主页:https://alice.blog.csdn.net/ 尽管当前水平可能不及各位大佬,但我还是希望自己能够做得更好,因为一天的生活就是一生的缩影。
上次我们以O2O产品为例讨论了用户画像的实践,这次我们将以OTA产品为例,进一步讨论如何依托数据,搭建用户画像系统。 思 考 用户画像是什么? 简单来说,用户画像就是从不同的维度来表达一个人,这些维度可以是事实的,可以是抽象的;可以是自然属性,比如性别、年龄;可以是社会属性,比如职业、社交特征;可以是财富状况,比如是否高收入人群,是否有固定资产;可以是家庭情况,比如是否已经结婚,是 否有孩子;可以是购物习惯,比如喜欢网购还是喜欢逛商场;可以是位置特征,比如在哪个城市生活;可以是其他行为习惯。 总之,所有大家
领取专属 10元无门槛券
手把手带您无忧上云