阅读前面的文章,我们已经知道了进程是操作系统对正在运行的程序的抽象。现代操作系统中,进程通常需要和其他进程进行通信。我们称之为进程间通信 问题。又叫做IPC(Inter Process Communication) 问题。IPC主要解决以下3个问题:
今天我想再来讨论一下高并发的问题,我们看到最近以Rust、Go为代表的云原生、Serverless时代的语言,在设计高并发编程模式时往往都会首推管道机制,传统意义上并发控制的利器如互斥体或者信号量都不是太推荐。
网上看了很多的嵌入式学习路线,有的比较片面,有的为了博人眼球东拼西凑,几乎把整个行业用得着用不着的技术都写上去了,没有侧重点,简直是劝退指南,还有的纯粹是打广告卖板子招生。
曾经是某见的教学总监,我带出来的学生也有大几千了,基本都从事linux相关开发工作。现在在各行各业也基本都是翘楚,有的都成公司技术主管,带领几十人上百人团队。
在软件开发中使用多线程可以大大的提升用户体验度,增加工作效率。iOS系统中提供了多种分线程编程的方法,在前两篇博客都有提及:
多线程编程已经成为了现代软件开发的重要组成部分。对于Linux操作系统而言,多线程的支持和实现更是被广泛应用。本文将通过详细解析Linux操作系统中的多线程概念、线程的创建与管理、同步与互斥、线程间通信等方面,并结合示例代码,来深入探讨Linux的多线程编程。
UNIX/Linux 是多任务的操作系统,通过多个进程分别处理不同事务来实现,如果多个进程要进行协同工作或者争用同一个资源时,互相之间的通讯就很有必要了
(一)C++语言基础知识: (1)static关键字的作用: 1.全局静态变量 在全局变量前加上关键字static,全局变量就定义成一个全局静态变量。 静态存储区,在整个程序运行期间一直存在。 初始化:未经初始化的全局静态变量会被自动初始化为0(自动对象的值是任意的,除非他被显式初始化)。 作用域:全局静态变量在声明他的文件之外是不可见的,准确地说是从定义之处开始,到文件结尾。 2. 局部静态变量 在局部变量之前加上关键字static,局部变量就成为一个局部静态变量。 内存中的位置:静态存储区。 初始化:未经初始化的全局静态变量会被自动初始化为0(自动对象的值是任意的,除非他被显式初始化)。 作用域:作用域仍为局部作用域,当定义它的函数或者语句块结束的时候,作用域结束。但是当局部静态变量离开作用域后,并没有销毁,而是仍然驻留在内存当中,只不过我们不能再对它进行访问,直到该函数再次被调用,并且值不变。 3. 静态函数 在函数返回类型前加static,函数就定义为静态函数。函数的定义和声明在默认情况下都是extern的,但静态函数只是在声明他的文件当中可见,不能被其他文件所用。 函数的实现使用static修饰,那么这个函数只可在本cpp内使用,不会同其他cpp中的同名函数引起冲突。 warning:不要再头文件中声明static的全局函数,不要在cpp内声明非static的全局函数,如果你要在多个cpp中复用该函数,就把它的声明提到头文件里去,否则cpp内部声明需加上static修饰。 4. 类的静态成员 在类中,静态成员可以实现多个对象之间的数据共享,并且使用静态数据成员还不会破坏隐藏的原则,即保证了安全性。因此,静态成员是类的所有对象中共享的成员,而不是某个对象的成员。对多个对象来说,静态数据成员只存储一处,供所有对象共用。 5. 类的静态函数 静态成员函数和静态数据成员一样,它们都属于类的静态成员,它们都不是对象成员。因此,对静态成员的引用不需要用对象名。 (2) C++与C语言的区别: 设计思想上: C++是面向对象的语言,而C是面向过程的结构化编程语言 语法上: C++具有封装、继承和多态三种特性 C++相比C,增加多许多类型安全的功能,比如强制类型转换、 C++支持范式编程,比如模板类、函数模板等 (二)计算机操作系统: (1)进程与线程的概念,以及为什么要有进程线程,其中有什么区别,他们各自又是怎么同步的 ? 进程是对运行时程序的封装,是系统进行资源调度和分配的的基本单位,实现了操作系统的并发。 线程是进程的子任务,是CPU调度和分派的基本单位,用于保证程序的实时性,实现进程内部的并发;线程是操作系统可识别的最小执行和调度单位。每个线程都独自占用一个虚拟处理器:独自的寄存器组,指令计数器和处理器状态。每个线程完成不同的任务,但是共享同一地址空间(也就是同样的动态内存,映射文件,目标代码等等),打开的文件队列和其他内核资源。 进程与线程的区别: 1.一个线程只能属于一个进程,而一个进程可以有多个线程,但至少有一个线程。线程依赖于进程而存在。 2.进程在执行过程中拥有独立的内存单元,而多个线程共享进程的内存。(资源分配给进程,同一进程的所有线程共享该进程的所有资源。同一进程中的多个线程共享代码段(代码和常量),数据段(全局变量和静态变量),扩展段(堆存储)。但是每个线程拥有自己的栈段,栈段又叫运行时段,用来存放所有局部变量和临时变量。) 3.进程是资源分配的最小单位,线程是CPU调度的最小单位; 4.系统开销:由于在创建或撤消进程时,系统都要为之分配或回收资源,如内存空间、I/o设备等。因此,操作系统所付出的开销将显著地大于在创建或撤消线程时的开销。类似地,在进行进程切换时,涉及到整个当前进程CPU环境的保存以及新被调度运行的进程的CPU环境的设置。而线程切换只须保存和设置少量寄存器的内容,并不涉及存储器管理方面的操作。可见,进程切换的开销也远大于线程切换的开销。 5.通信:由于同一进程中的多个线程具有相同的地址空间,致使它们之间的同步和通信的实现,也变得比较容易。进程间通信IPC,线程间可以直接读写进程数据段(如全局变量)来进行通信——需要进程同步和互斥手段的辅助,以保证数据的一致性。在有的系统中,线程的切换、同步和通信都无须操作系统内核的干预 6.进程编程调试简单可靠性高,但是创建销毁开销大;线程正相反,开销小,切换速度快,但是编程调试相对复杂。 7.进程间不会相互影响 ;线程一个线程挂掉将导致整个进程挂掉 8.进程适应于多核、多机分布;线程适用于多核 。 进程间通信的方式: 进程间通信主要包括管道、系统IPC(包括消息队列、信号量、信号、共享内存等)、以及套接字so
作者 | 马超 责编 | 张红月 出品 | CSDN博客 Serverless的核心理念就是函数式计算,开发者无须再关注具体的模块,云上部署的粒度变成了程序函数,自动伸缩、扩容等工作完全由云服务负责。 Serverless Computing,即”无服务器计算”,其实这一概念在刚刚提出的时候并没有获得太多的关注,直到2014年AWS Lambda这一里程碑式的产品出现。Serverless算是正式走进了云计算的舞台。2018年5月,Google在KubeCon+CloudNative 201
对于信号量我们并不陌生。信号量在计算机科学中是一个很容易理解的概念。本质上,信号量就是一个简单的整数,对其进行的操作称为PV操作。进入某段临界代码段就会调用相关信号量的P操作;如果信号量的值大于0,该值会减1,进程继续执行。相反,如果信号量的值等于0,该进程就会等待,直到有其它程序释放该信号量。释放信号量的过程就称为V操作,通过增加信号量的值,唤醒正在等待的进程。
打算给我们部门弄个内部分享。发现大家对一些底层知识的认知停留在一句一句的,比如听说JVM使用-XX:-UseBiasedLocking取消偏向锁可以提高性能,因为它只适用于非多线程高并发应用。使用数字对象的缓存-XX:AutoBoxCacheMax=20000比默认缓存-128~127要提高性能。对于JVM和linux内核,操作系统没有系统的概念,遇到实际问题往往没有思路。所以我的内部分享,主要分为linux部分,jvm部分和redis部分。这篇是linux篇。学习思路为主,知识为辅。我也是菜鸟一枚~~
今天给大家介绍一位我的朋友,他是中科大软件学院的硕士,在去年秋招中斩获了多个互联网大厂的offer,后来他将自己从实习到秋招参加的一百多轮面试进行了总结,希望对即将找工作的大家有所帮助,以下为正文。
进程间通信(IPC,InterProcess Communication)是指在不同进程之间传播或交换信息。
现在把一些问题总结一下,算是记录一下面试的经历吧。以后有空简单地回答一下,
RT-Thread包括了很多不同类型的对象,如线程,信号量,互斥量等。在代码中,这些对象被汇总到一个枚举中(在rtdef.h中):
在计算机科学中,多线程是指一个进程中的多个线程共享该进程的资源。一般来说,多线程可以提高程序的执行效率,从而加快了应用程序的响应时间。Go语言作为一种现代化的编程语言,特别适合于开发高并发的网络服务。本文将介绍Golang的并发模型和同步机制。
信号量(semaphore)本质上是一个计数器,用于多进程对共享数据对象的读取,它和管道有所不同,它不以传送数据为主要目的,它主要是用来保护共享资源(信号量也属于临界资源),使得资源在一个时刻只有一个进程独享。 在信号量进行PV操作时都为原子操作(因为它需要保护临界资源)。
前言:非常早之前就接触过同步这个概念了,可是一直都非常模糊。没有深入地学习了解过,最近有时间了,就花时间研习了一下《linux内核标准教程》和《深入linux设备驱动程序内核机制》这两本书的相关章节。趁刚看完,就把相关的内容总结一下。
进程与线程之间是有区别的,不过linux内核只提供了轻量进程的支持,未实现线程模型。Linux是一种“多进程单线程”的操作系统。Linux本身只有进程的概念,而其所谓的“线程”本质上在内核里仍然是进程。
Semaphore,如今通常被翻译为"信号量",过去也曾被翻译为"信号灯",因为类似于现实生活中的红绿灯,车辆是否能通行取决于是否是绿灯。同样,在编程世界中,线程是否能执行取决于信号量是否允许。
在并发编程中,并发性是理解此类系统如何运作的关键概念。在使用这些系统的从业者遇到的各种挑战中,生产者-消费者问题尤为突出 - 这是最著名的同步问题之一。在本文中,我们的目标是分析这个主题并强调它对并发计算的重要性,同时研究植根于 C 的可能解决方案。
前言:在大学的时候,我们班级上面都有很多人觉得学习UCOSII(包括UCOSIII)是没什么厉害的,因为很多人都喜欢去学习Linux操作系统,但是,但是,真实的对整个UCOSII操作系统进行学习,我可以保证,如果你是基于源码级别的阅读的话,绝对是不简单的。仅仅是调用几个API的话,是永远用不好UCOSII的操作系统的。还有你真正学通了UCOSII操作系统的话,那么你对Linux操作系统的内核也不会有太大的难度。
sema.go这个文件是Go语言中实现信号量的关键文件,其中实现了两种类型的信号量:waitgroup和sema。
进程间通信(IPC,Inter-Process Communication),指至少两个进程或线程间传送数据或信号的一些技术或方法。
信号量是并发编程中常见的一种同步机制,在需要控制访问资源的线程数量时就会用到信号量,关于什么是信号量这个问题,我引用一下维基百科对信号量的解释,大家就明白了。
在上一篇文章中,我们探讨了进程间通信的三种常见机制:管道、消息队列和共享内存。我们了解到,这些机制各有其特点和适用场景,可以根据实际需求选择合适的机制进行进程间通信。然而,进程间通信并不仅限于这三种方式。
1、什么是进程,线程,有什么区别 2、多进程、多线程的优缺点 3、什么时候用进程,什么时候用线程 4、多进程、多线程同步(通讯)的方法 5、进程线程的状态转换图 。什么时候阻塞,什么时候就绪 6、父进程、子进程的关系以及区别 7、什么是进程上下文、中断上下文 8、一个进程可以创建多少线程,和什么有关 9、进程间通讯: (1)管道/无名管道(2)信号(3)共享内存(4)消息队列(5)信号量(6)socket 注意:临界区则是一种概念,指的是访问公共资源的程序片段,并不是一种通信方式。 10、线程通讯(锁): (1)信号量(2)读写锁(3)条件变量(4)互斥锁(5)自旋锁
Linux进程是系统中正在运行的程序的实例。每个进程都有一个唯一的进程标识符(PID),并且拥有自己的地址空间、内存、数据栈以及其他用于跟踪执行状态的属性。进程可以创建其他进程,被创建的进程称为子进程,创建它们的进程称为父进程。这种关系形成了一个进程树。
匿名管道通信 认识管道 匿名管道 匿名管道测试 管道的四种情况 管道的五种特性 管道的读写规则
在去年结束的秋季招聘中,后台开发或服务器开发的岗位需求一度火热,甚至超过了算法岗。不少同学从诸神黄昏的算法岗战场上退下,转向更偏向工程能力的后台开发岗,从而造成后台开发岗位竞争的大爆发。
并发 是指在某一时间段内能够处理多个任务的能力,而 并行 是指同一时间能够处理多个任务的能力。并发和并行看起来很像,但实际上是有区别的,如下图(图片来源于网络):
当程序被停住了,你可以用continue命令恢复程序的运行直到程序结束,或下一个断点到来。也可以使用step或next命令单步跟踪程序。
比如尽管有两个人去水井打水,但是水井却只有一个;合理安排的话刚好错开,但是如果安排不合理,那就会出现冲突,出现冲突怎么办?总有一个先来后到,等下就好了。
内存顺序,通俗地讲,是关于代码编译成机器指令后的执行顺序问题。内存顺序和编译器、硬件架构密切相关。那为什么会产生内存顺序问题呢?有两方面原因: 一方面,编译器为了优化程序性能,不会完全按照开发者写的代码的顺序来生成机器指令; 另一方面,在程序运行时,为了提高性能,CPU也不完全按照程序的指令顺序执行,比如体系结构里经典的Tomasulo算法。
管道可用于具有亲缘关系进程间的通信,有名管道除了具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。
信号量(sem)在操作系统中是一种实现系统中任务与任务、任务与中断间同步或者临界资源互斥保护的机制。在多任务系统中,各任务之间常需要同步或互斥,信号量就可以为用户提供这方面的支持。
信号量Semaphore是一个控制访问多个共享资源的计数器,它本质上是一个“共享锁”。 Java并发提供了两种加锁模式:共享锁和独占锁。前面LZ介绍的ReentrantLock就是独占锁。对于独占锁而言,它每次只能有一个线程持有,而共享锁则不同,它允许多个线程并行持有锁,并发访问共享资源。 独占锁它所采用的是一种悲观的加锁策略, 对于写而言为了避免冲突独占是必须的,但是对于读就没有必要了,因为它不会影响数据的一致性。如果某个只读线程获取独占锁,则其他读线程都只能等待了,这种情况下就限制了不必要的并发性,降
同步原语是计算机科学中用于实现进程或线程之间同步的机制。它提供了一种方法来控制多个进程或线程的执行顺序,确保它们以一致的方式访问共享资源。
因业务需要,过去一年从熟悉的Android开发开始涉及嵌入式Linux开发,编程语言也从Java/Kotlin变成难上手的C++,这里面其实有很多差异点,特此整理本文来详细对比这两者开发的异同,便于对嵌入式Linux开发感兴趣的同学一些参考。
在并发编程中,为了保证数据的一致性和完整性,需要使用特定的机制来控制多个线程对共享资源的访问。这里主要介绍几个相关的概念:线程的同步和互斥、临界区、临界资源、信号量、以及PV操作。
本篇博客我们就来聊一下combineLatest()的使用以及具体的实现方式。在之前的《iOS开发之ReactiveCocoa下的MVVM》的博客中我们已经聊过combineLatest()的用法,虽然是使用老版本的ReactiveCocoa和Objective-C语言介绍的,不过使用原理上都是一致的。都是将两个信号量进行合并,当其中一个信号量发出Value事件时,如果另一个信号量之前也发送过Value事件,那么就取出最后一个事件的Value值与当前发送的事件值进行合并,然后将合并后的值发送给新的信号量的观
C++作为一门经典的编程语言,从上世纪八十年代起至今一直被广泛应用在系统开发和高性能计算领域。近几年来随着各种编程语言和范式的兴起,C++的身影渐渐淡出了人们的视野。但是作为一个仍在不断进步的语言,C++在最近几年飞速发展,已经具备了现代语言应有的特性,而且也有了许多已有的和正在进行的新的拓展。 经典的C++ 作为C语言的超集,一方面,C++集成了C在系统编程优点,能够精确的控制内存中的每一个bit;另一方面,提供了丰富的抽象机制和编程范式,引入了面向对象、泛型编程和函数式编程等风格。因为这一点,C++拥
月光博客6月12日发表了《写给新手程序员的一封信》,翻译自《An open letter to those who want to start programming》,我的朋友(他在本站的id是Mailper)告诉我,他希望在酷壳上看到一篇更具操作性的文章。因为他也是喜欢编程和技术的家伙,于是,我让他把他的一些学习Python和Web编程的一些点滴总结一下。于是他给我发来了一些他的心得和经历,我在把他的心得做了不多的增改,并根据我的经历增加了“进阶”一节。这是一篇由新手和我这个老家伙根据我们的经历完成的文
当提到并发编程、多线程编程时,我们往往都离不开『锁』这一概念,Go 语言作为一个原生支持用户态进程 Goroutine 的语言,也一定会为开发者提供这一功能,锁的主要作用就是保证多个线程或者 Goroutine 在访问同一片内存时不会出现混乱的问题,锁其实是一种并发编程中的同步原语(Synchronization Primitives)。
我们在Linux信号基础中已经说明,信号可以看作一种粗糙的进程间通信(IPC, interprocess communication)的方式,用以向进程封闭的内存空间传递信息。为了让进程间传递更多的信息量,我们需要其他的进程间通信方式。这些进程间通信方式可以分为两种: 管道(PIPE)机制。在Linux文本流中,我们提到可以使用管道将一个进程的输出和另一个进程的输入连接起来,从而利用文件操作API来管理进程间通信。在shell中,我们经常利用管道将多个进程连接在一起,从而让各个进程协作,实现复杂的功能。 传
允许多个进程共享一个给定的存储区, 因为数据不需要在进程之间复制, 所以这是一种最快的IPC.
在深圳做嵌入式,大疆公司绝对是Top级别的,大疆的技术栈也很深。但2020受美国制裁后,有所缩招。另外提醒,研发岗对学历要求高一些。
串口中断属于STM32本身的资源,不涉及到FreeRTOS,但可与FreeRTOS配合使用。
领取专属 10元无门槛券
手把手带您无忧上云