首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

简单理解向量对向量的求导

人生的跑道上,有人用心欣赏风景,有人努力让自己成为风景。人人都希望追求到美好,其实美好就是无止境的追求。...全文字数:1127字 阅读时间:8分钟 前言 本文引入向量对向量求导的问题,向量对向量求导的关键是最终求导向量的排列问题。...提出了向量对向量求导的具体流程,最后以本文开头的向量求导为例具体展示向量对向量求导的具体流程。...image.png image.png 不过为了方便我们在实践中应用,通常情况下即使y向量是列向量也按照行向量来进行求导。...▲注意事项~来自小象学院 几个重要的公式推广(可以使用上面的方式进行求解): 参考: 1. 小象学院机器学习

3.1K10

向量函数的内积_向量的内积运算

大家好,又见面了,我是你们的朋友全栈君。 这是我的第一篇原创博客,谈谈自己在读研中的一些小思考,希望能给大家的学习带来一点启发。...而函数内积的定义为: 可能很多人会想为什么函数也可以有内积,为什么这样定义,它跟一般的向量内积又有什么联系呢?...回顾一下两个向量的内积: 我们直到两个向量的内积可以看作是a向量投影到b向量,也可以看作是b向量投影到a向量;如果两个向量正交,那他们的内积就为零。...某种意义上,可见向量内积也可以看作是两者相似程度的度量。...回到函数的内积,若两个函数是离散的,即f[n],g[n],我们不就可以把该函数看作是一个在n维空间展开的向量 可见一个离散函数的内积下形式是跟一般向量内积的形式是一致的。

1.2K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    向量内积_向量的内积和外积公式

    向量内积 一般指点积; 在数学中,数量积(dot product; scalar product,也称为点积)是接受在实数R上的两个 向量并返回一个实数值 标量的 二元运算。...[1] 两个向量a = [a1, a2,…, an]和b = [b1, b2,…, bn]的点积定义为: a·b=a1b1+a2b2+……+anbn。...使用 矩阵乘法并把(纵列)向量当作n×1 矩阵,点积还可以写为: a·b=a^T*b,这里的a^T指示 矩阵a的 转置。...点乘的几何意义是可以用来表征或计算两个向量之间的夹角,以及在b向量在a向量方向上的投影,有公式: 推导过程如下,首先看一下向量组成: 定义向量: 根据三角形余弦定理有: 根据关系c=a-b...(a、b、c均为向量)有: 即: 向量a,b的长度都是可以计算的已知量,从而有a和b间的夹角θ: 根据这个公式就可以计算向量a和向量b之间的夹角。

    1K20

    词向量:如何评价词向量的好坏

    一、前言 词向量、词嵌入或者称为词的分布式表示,区别于以往的独热表示,已经成为自然语言任务中的一个重要工具,对于词向量并没有直接的方法可以评价其质量,下面介绍几种间接的方法。...二、评价方法 对于词向量的评价更多还是应该考虑对实际任务的收益,脱离的实际任务很难确定A模型就一定比B好,毕竟词向量方法更多是一种工具。...上述文件代表了词语之间的语义相关性,我们利用标注文件与训练出来的词向量相似度进行比较,如:词向量之间的cos距离等,确定损失函数,便可以得到一个评价指标。...3、文本分类任务 这个任务利用词向量构成文本向量,一般采用求和平均的方式,之后利用构成的文本向量进行文本分类,根据分类的准备率等指标衡量词向量的质量。...在语料的选择上,同领域的语料比大规模的其他领域语料重要。 3、向量维度 向量维度太小难以表现出语义的复杂度,一般更大的维度的向量表现能力更强,综合之下,50维的向量可以胜任很多任务。

    1.2K20

    【NLP-词向量】词向量的由来及本质

    计划用3-4次,彻底说清楚在自然语言处理中,词向量的由来,本质和训练。公众号专栏主要讲基本原理,知识星球讲实际的操作。 本篇主要讲述词向量的由来及本质。...例如,根据语料库的分词结果,建立一个词典,每个词用一个向量来表示,这样就可以将文本向量化了。 最早的文本向量化方法是词袋模型,我们先来看看词袋模型。...接下来,词向量就“粉墨登场”了。 3 词向量 相比于词袋模型,词向量是一种更为有效的表征方式。怎么理解呢?词向量其实就是用一个一定维度(例如128,256维)的向量来表示词典里的词。...经过训练之后的词向量,能够表征词语之间的关系。例如,“香蕉”和“苹果”之间的距离,会比“香蕉”和“茄子”之间的距离要近。 通过多维向量表示,也能更为方便的进行计算。...5 总结 上面详细介绍了词向量的来历和作用,并介绍了一种词向量的训练方法。 在实际过程中,并不是用上述神经网络来训练词向量的因为词向量是如此的重要,NLP工作者们设计了专门的网络来训练词向量。

    1.6K20

    平面几何:求向量 a 到向量 b扫过的夹角

    今天我们来学习如何求向量 a 到向量 b扫过的弧度,或者也可以说是角度,转换一下就好了。 求两向量的夹角 求两向量的夹角很简单,用点积公式。...,这个夹角是没有方向的,为大于等于 0 小于 180 度,我们不知道其中一个向量在另一个向量的哪一次。...我们往往想知道的是 向量 A 沿着特定方向旋转,要旋转多少角度才能到达向量 B 的位置。 我们要求的角度在 -180 到 180 范围,负数表示沿反方向旋转多少多少度。...三维中两个向量 a、b 的叉积运算,会使用 a x b 表示,其结果也是一个向量 c。向量 c 会同时垂直于向量 a、b,或者可以理解为垂直于它们形成的平面)。...叉积运算出来的结果向量的方向,在右手坐标系(二维坐标中,我们习惯的 x 向右,y 向上,z 朝脸上)中,满足 右手定则,见下图: 这个二维向量也能用,叉积是一个标量,即一个数字,对应三维空间中,第三个维度

    25610

    探索向量搜索的世界:为什么仅有向量搜索是不够的?

    向量搜索是一种利用深度学习模型将文本转换为高维向量,再将查询与数据的向量进行相似性计算的方法,它能够进行上下文的理解及语义分析,从而提高搜索结果的质量。...如何结合向量搜索和其他搜索技术,构建一个高效且灵活的搜索系统? 大语言模型是如何与搜索技术相结合的? 向量搜索是什么?它有什么优势和局限性? 向量搜索是一种基于深度学习模型将文本转换为高维向量的方法。...向量搜索也有以下几个局限性: 向量搜索在自然语言中的理解能力来自于深度学习模型,而非向量索引和向量相似性计算: 需要大量的计算资源和存储空间来训练和部署深度学习模型。...因此,我们决策是否需要引入向量搜索时,需要对其各方面有充分的了解,而不是仅仅引入一个向量库的问题,特别是大部分向量库仅仅提供了向量存储,向量索引,向量相似性比较这三方面的能力,但这只解决了工程上问题,也就是说...既可以对数据源进行向量化以进行向量搜索,也能提取出数据中的深度理解的特征与标签信息,以进行词索引的过滤和检索 能够支持向量数据的重建和分配,当需要调整数据维度,精度,或者嵌入的生成模型时,可以通过重建向量索引的方式进行原地更新

    3.1K165

    搜索的未来是向量

    向量搜索提供了传统关键词搜索无法实现的可能性。 向量搜索的工作原理 向量搜索利用先进的机器学习模型将文本数据转换为高维向量,捕捉词语和短语之间的语义关系。...通过理解上下文和语义,向量搜索提供高度符合用户意图的结果,即使查询中没有确切的关键词。这种能力使向量搜索成为改善用户体验的宝贵工具,因为它能够针对不精确或描述性的查询提供精确准确的搜索结果。...一个简单的向量搜索示例 将数据转换为向量涉及嵌入过程,其中文本数据被转换为高维空间中的数值表示。在这种情况下,向量是一个数学实体,通过将词语和短语表示为多维空间中的点来捕捉它们的语义含义。...当用户使用这个简单的数据集搜索类似“这个字段应该使用什么数据类型?”这样的短语时,搜索引擎会将查询转换为向量表示。然后,它将此查询向量与数据集的向量进行比较。...相关文章: 如何让PostgreSQL的向量数据速度与Pinecone一样快 向量数据库:几何遇见机器学习 关于向量搜索一定要预先知道的事情 不要在专用向量数据库上构建您的未来 Pgvector与Pinecone

    13610

    向量的加减(输出重载)

    题目描述 设向量X=(x1,x2,…,xn)和Y=(y1,y2…,yn),它们之间的加、减分别定义为: X+Y=(x1+y1,x2+y2,…,xn+yn) X-Y=(x1-y1,x2-y2,…,xn-yn...) 编程序定义向量类Vector ,重载运算符“+”、“-”,实现向量之间的加、减运算;并重载运算符”向量的输出操作。...要求如下: 1.实现Vector类; 2.编写main函数,初始化两个Vector对象的,计算它们之间的加减,并输出结果。 输入 第1行:输入10个int类型的值,初始化第一个Vector对象。...第2行: 输入10个int类型的值,初始化第一个Vector对象。 输出 第1行:2个Vector对象相加后的输出结果。 第2行:2个Vector对象相减后的输出结果。...,运算符重载,比较需要关心的地方就是什么时候加const,在哪里加const,什么时候加&,在哪里加&之类的问题,跑不起来的时候就都试试,把能加的都加上去。

    17430

    比较不同的向量嵌入

    大语言模型(LLM)正在风靡,我们正面临着 ChatGPT 等语言应用的新范式。向量数据库将是栈的核心部分。所以,理解向量及其重要性非常重要。...这个项目展示了不同模型之间的向量嵌入的区别,并展示了如何在一个 Jupyter Notebook 中使用多个向量数据集合。...向量嵌入是通过将输入数据馈送到预先训练的神经网络并获取倒数第二层的输出而生成的。 神经网络具有不同的架构,并在不同的数据集上进行训练,这使每个模型的向量嵌入都是独一无二的。...这就是使用非结构化数据和向量嵌入为何具有挑战性的原因。后面我们将看到,在不同数据集上微调的具有相同基础的模型可以产生不同的向量嵌入。...在我的笔记本电脑上运行这三个兼容模型是这个项目最艰难的部分之一。 为了比较向量嵌入,我们需要等长的向量。在这个例子中,我们使用 384 维向量,这是根据 MiniLM 句子变换器模型。

    17010

    Facebook搜索的向量搜索

    概述 不管是搜索系统还是推荐系统中,向量召回都是一个不可或缺的一个部分,担负着重要的作用。...注:在文本匹配中通常采用query扩展的方法匹配“苹果手机”和“iPhone” 基于向量的方法能有效解决语义鸿沟的问题。...在向量召回中,通过embedding的方法分别将query和doc映射到同一个空间中,此时,query和doc的匹配问题就变成在该空间中计算query和doc的相似度。...Facebook于2020年公布了其向量召回系统[1]。Facebook将向量召回应用在社交网络的搜索中,针对其场景的特殊性,提出将用户的上下文环境考虑进query的向量中。...特征工程 在FaceBook的向量搜索中,基于其特定的场景,使用到的特征包括query和document的文本特征、位置特征、社交Embedding特征。 文本特征。

    2.5K50

    支持向量机的原理

    一、什么是支持向量机 支持向量机(support vector machine,简称SVM)是一种基于统计学习理论的新型学习机,是由前苏联教授Vapnik最早提出的。...与传统的学习方法不同,支持向量机是结构风险最小化方法的近似实现。...因此,尽管支持向量机不利用问题的领域知识,在模式分类问题上,仍能提供好的泛化性能,这个属性是支持向量机特有的。...从概念上说,支持向量是那些离决策平面最近的数据点,它们决定了最优分类超平面的位置。 二、支持向量机的原理 超平面和最近的数据点之间的间隔被称为分离边缘,用P表示。...基本上,支持向量机的思想建立在两个数学运算上,概述如下 1) 输入向量到高维特征空间的非线性映射,特征空间对输入和输出都是隐藏的 2) 构造一个最优超平面用于分离在上一步中发现的特征。

    70520

    R语言的数据结构(包含向量和向量化详细解释)

    1 几个概念:向量,向量化,标量,元素,组件,标签,原子向量,递归向量 以下叙述参考书籍加自己理解,有叙述不妥的留言 向量vector和标量 个人理解,向量是有方向的,由大于等于2个元素构成的数据类型...2向量的循环补齐 两个向量使用运算符,如果两个向量长度不同,R会自动循环补齐(recycle),也就是它会自动重复较短的向量,直到与另外一个向量匹配。...3向量化及向量化函数 3.1向量输入,向量或矩阵输出 向量输入,向量输出 向量化就是对向量的每一个元素应用函数,如果一个函数使用了向量化的运算符,那么它也被向量化了,代码运行速度会提升。...4 常见数据结构和向量的关系及常见操作 4.1矩阵 前已述及,矩阵也是向量,特殊的向量,包含量阿哥附加的属性:行和列。所以,矩阵也有模式,例如数值型或字符型。但向量不能看做有一列或一行的矩阵。...5 列表和数据框(都不是向量) 5.1 列表 列表创建及基本结构 向量的元素要求同种类型,而列表list与向量不同,可以组合多个不同类型的对象。所以列表不是向量。

    7.1K20

    向量的内,外积及其几何含义讲解_两向量外积的几何意义

    大家好,又见面了,我是你们的朋友全栈君。 一、向量的内积(点乘) 定义 概括地说,向量的内积(点乘/数量积)。...对两个向量执行点乘运算,就是对这两个向量对应位一一相乘之后求和的操作,如下所示,对于向量a和向量b: a和b的点积公式为: 这里要求一维向量a和向量b的行列数相同。...向量内积的几何意义 内积(点乘)的几何意义包括: 表征或计算两个向量之间的夹角 b向量在a向量方向上的投影 有公式: 推导过程如下,首先看一下向量组成: 定义向量c: 根据三角形余弦定理(这里a、...并且两个向量的外积与这两个向量组成的坐标平面垂直。 定义:向量a与b的外积a×b是一个向量,其长度等于|a×b| = |a||b|sin∠(a,b),其方向正交于a与b。...(线性) 向量外积的几何意义 在三维几何中,向量a和向量b的外积结果是一个向量,有个更通俗易懂的叫法是法向量,该向量垂直于a和b向量构成的平面。

    8.4K10

    ES8 向量功能窥探系列(二):向量数据的存储与优化

    我们将从向量数据的索引构成,读写流程,一直到量化技术,一步步带读者对 Elasticsearch 向量索引存储机制形成全面理解。...所以,.vec、.vemf这套 Flat 索引才被完整保留,.vex的存储大小才如此小,否则.vex无法单独工作。.fdt和.vec的作用,在前文中已经分析过了,不再赘述。...这一显著的效果也说明,只要涉及了向量搜索,无论是纯向量还是混合场景,占据存储的大头基本来到了向量这里。...可以粗略理解为:如果原始向量的冗余程度高,则量化后仍能表达出向量的核心含义;如果原始向量的冗余程度低,则量化后可能承载不了原始向量所有的表达,会损失掉的表达就多。...量化实际是将原始高位向量压缩成低位向量的一种算法,如果把量化比作“脱水”,那这类算法函数的逆运算,就可以实现反向“复水”得到原来的向量。

    32300

    扫码

    添加站长 进交流群

    领取专属 10元无门槛券

    手把手带您无忧上云

    扫码加入开发者社群

    相关资讯

    热门标签

    活动推荐

      运营活动

      活动名称
      广告关闭
      领券