参考文献Tensorflow 实战 Google 深度学习框架[1]实验平台: Tensorflow1.4.0 python3.5.0 Tensorflow 常用保存模型方法 import tensorflow...") #保存模型到相应ckpt文件 saver.restore(sess,"/path/model.ckpt") #从相应ckpt文件中恢复模型变量 使用 tf.train.Saver...会保存运行 Tensorflow 程序所需要的全部信息,然而有时并不需要某些信息。...比如在测试或离线预测时,只需要知道如何从神经网络的输入层经过前向传播计算得到输出层即可,而不需要类似的变量初始化,模型保存等辅助节点的信息。...,其中保存的时候保存的是计算节点的名称,为add # 但是读取时使用的是张量的名称所以是add:0 result = tf.import_graph_def(graph_def, return_elements
下面简单介绍通过tensorflow程序来持久化一个训练好的模型,并从持久化之后的模型文件中还原被保存的模型。简单来说就是模型的保存以及载入。...1 模型保存 下面用一个简单的例子来说明如何通过tensorflow提供的tf.train.Saver类载入模型: import tensorflow as tf #声明两个变量并计算他们的和 a...Tensorflow提供了tf.train.NewCheckpointReader类查看保存的变量信息,同时我们也可以使用封装好的方法来简单查看当前结构下保存的变量名以及其对应的变量值: from tensorflow.python.tools.inspect_checkpoint...保存了一个新的模型,但是checkpoint文件只有一个 上面的程序默认情况下,保存了TensorFlow计算图上定义的全部变量,但有时可能只需要保存部分变量,此时保存模型的时候就需要为tf.train.Saver...指定部分保存部分变量知道了变量名以及变量名称之间的关系,我们可以使用字典的形式体现这种对应关系。
本文由腾讯云+社区自动同步,原文地址 http://blogtest.stackoverflow.club/article/tensorflow_save_restore_model/ ckpt模型与pb...模型比较 ckpt模型可以重新训练,pb模型不可以(pb一般用于线上部署) ckpt模型可以指定保存最近的n个模型,pb不可以 保存ckpt模型 保存路径必须带.ckpt这个后缀名,不能是文件夹,否则无法保存...outputs_variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='outputs') # max_to_keep是指在文件夹中保存几个最近的模型...pb 格式模型保存与恢复相比于前面的 .ckpt 格式而言要稍微麻烦一点,但使用更灵活,特别是模型恢复,因为它可以脱离会话(Session)而存在,便于部署。...加载步骤如下: tf.Graph()定义了一张新的计算图,与上面的计算图区分开 ParseFromString将保存的计算图反序列化 tf.import_graph_def导入一张计算图 新建Session
这两天搜索了不少关于Tensorflow模型保存与加载的资料,发现很多资料都是关于checkpoints模型格式的,而最新的SavedModel模型格式则资料较少,为此总结一下TensorFlow如何保存...其主要优点是SaveModel与语言无关,比如可以使用python语言训练模型,然后在Java中非常方便的加载模型。当然这也不是说checkpoints模型格式做不到,只是在跨语言时比较麻烦。...另外如果使用Tensorflow Serving server来部署模型,必须选择SavedModel格式。 SavedModel包含啥?...saved_model.pb 保存 为了简单起见,我们使用一个非常简单的手写识别代码作为示例,代码如下: from tensorflow.examples.tutorials.mnist import...,第三个参数是模型保存的文件夹。
前言 在之前一篇文章里:使用CNN+ Auto-Encoder 实现无监督Sentence Embedding (代码基于Tensorflow),训练完成后,encode的参数也就被训练好了,这个时候我们利用这些参数对数据进行编码处理...保存模型 如果回忆下,上次的模型基本是这样的: Input(段落) -> encoder -> encoder -> decoder -> decoder -> lost function (consine...(tf.global_variables_initializer()) 之后,我们获取Saver对象: saver = tf.train.Saver() 然后在迭代的过程中,比如每迭代五次就保存一次模型...完整的恢复模型参看:tensorflow_restore.py 额外的话 参考资料: A quick complete tutorial to save and restore Tensorflow models...在该参考资料中,你还可以看到多种保存和使用tensor的方式。
大家好,又见面了,我是你们的朋友全栈君。 使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。...在inference时,可以通过修改这个文件,指定使用哪个model 2 保存Tensorflow模型 tensorflow 提供了tf.train.Saver类来保存模型,值得注意的是,在tensorflow...Above statement will print the saved value 执行后,打印如下: [ 0.51480412 -0.56989086] 4 使用恢复的模型 前面我们理解了如何保存和恢复模型...,很多时候,我们希望使用一些已经训练好的模型,如prediction、fine-tuning以及进一步训练等。.../checkpoint_dir/MyModel',global_step=1000) 接下来我们使用graph.get_tensor_by_name()方法来操纵这个保存的模型。
使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。...在inference时,可以通过修改这个文件,指定使用哪个model 2 保存Tensorflow模型 tensorflow 提供了tf.train.Saver类来保存模型,值得注意的是,在tensorflow...Above statement will print the saved value 执行后,打印如下: [ 0.51480412 -0.56989086] 4 使用恢复的模型 前面我们理解了如何保存和恢复模型...,很多时候,我们希望使用一些已经训练好的模型,如prediction、fine-tuning以及进一步训练等。.../checkpoint_dir/MyModel',global_step=1000) 接下来我们使用graph.get_tensor_by_name()方法来操纵这个保存的模型。
模型的保存和恢复 1、保存整个模型 2、仅仅保存模型的架构(框架) 3、仅仅保存模型的权重 4、在训练期间保存检查点 1、保存整个模型 1)整个模型保存到一个文件中,其中包含权重值,模型配置以及优化器的配置...,这样,您就可以为模型设置检查点,并稍后从完全相同的状态进行训练,而无需访问原始代码 2)在keras中保存完全可以正常的使用模型非常有用,您可以在tensorflow.js中加载他们,然后在网络浏览器中训练和运行它们...3)keras中使用HDF5标准提供基本的保存格式 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt...model.save("less_model.h5") 如何去使用保存好的模型呢?...在训练期间训练结束时候自动保存检查点,这样一来,您便可以使用经过训练的模型,而无需重新训练该模型,或者是从上次暂停的地方继续训练,以防止训练过程终端 回调函数:tf.keras.callbacks.ModelCheckpoint
前言 本文主要介绍在TensorFlow2 中使用Keras API保存整个模型,以及如果使用保存好的模型。...格式保存模型,保存后是xxx.h5的文件 model.save("my_model.h5") 1.2)加载使用模型 加载模型: # 重新创建完成相同的模型,包括权值和优化程序等 new_model =...格式也是使用model.save() 保存模型,使用tf.keras.models.loda_model加载模型;这种方式于Tensorflow Serving兼容。...保存,使用tf.keras.models.loda_model加载模型;这种方式于Tensorflow Serving兼容。...2.2)加载使用模型 加载保存好的模型: 使用模型: 代码版 HDF5格式: # 导入Tensorflow和依赖项 import os import tensorflow as tf from
Tensorflow 是当前最流行的机器学习框架,它自然支持这种需求。 Tensorflow 通过 tf.train.Saver 这个模块进行数据的保存和恢复。它有 2 个核心方法。...假设我们程序的计算图是 a * b + c ? a、b、d、e 都是变量,现在要保存它们的值,怎么用 Tensorflow 的代码实现呢?...数据的保存 import tensorflow as tf a = tf.get_variable("a",[1]) b = tf.get_variable("b",[1]) c = tf.get_variable...e %f" % e.eval()) test_restore(saver) 调用 Saver.restore() 方法就可以了,同样需要传递一个 session 对象,第二个参数是被保存的模型数据的路径...上面是最简单的变量保存例子,在实际工作当中,模型当中的变量会更多,但基本上的流程不会脱离这个最简化的流程。
https://blog.csdn.net/qq_25737169/article/details/79616671 使用tf fine-tune resnet模型 前言 ---- 使用tensorflow...false测试结果很差,设置成true测试结果恢复正常 训练结果很好,但是测试的结果要差上不少 但是tensorflow官方提供的常见的网络代码以及与训练模型都是基于slim模块建立的,使用者可以直接fine-tune...解决方案 ---- tensorflow的slim地址,资源如下: ?...True,测试给为false,此参数控制网络batchnorm的使用,设置为true时,batchnorm中的beta和gama参与训练进行更新,设置成false的时候不更新,而是使用计算好的moving...slim.batchnorm,而是使用了tf.contrib.layers.batch_norm,二者差距不大,都是一样的,当然你也可以使用自己定义的batchnorm函数。
今天要聊得是怎么利用TensorFlow来保存我们的模型文件,以及模型文件的回收(读取)。...刚开始接触TensorFlow的时候,没在意模型文件的使用,只要能顺利跑通代码不出bug就万事大吉,但是随着接触的数据量的增加以及训练时间的增长,万一中间由于各种原因(比如显卡线断了,电源线断了,手残点了...,恩,没错都是我遇到的问题… ./摊手.sh)意外中断,而没有保存模型文件,那一刻想屎的心都有了。 那么问题来了,我们需要重头开始训练模型吗,答案肯定是不用的,当然前提是保存了模型文件。...首先说一下这个模型文件通常是二进制格式保存的,那么里面到底是什么东西呢, 其实就是训练数据的根据网络结构计算得到的参数值。等我们再需要的时候,直接提取出来就好了。...TensorFlow的模型保存主要由Saver类来控制,接下来我会举个栗子,来说明怎么使用Saver类。下面的代码里面我会顺便把一些基础的问题提一下,了解的同学可以直接看最后两幅图。 ? ? ? ?
目标:训练网络后想保存训练好的模型,以及在程序中读取以保存的训练好的模型。 首先,保存和恢复都需要实例化一个 tf.train.Saver。...saver.save(sess, save_path, global_step=step) 之后,就可以使用 saver.restore() 方法,重载模型的参数,继续训练或用于测试数据。...saver.restore(sess, save_path) 模型的恢复用的是restore()函数,它需要两个参数restore(sess, save_path),save_path指的是保存的模型路径...我们可以使用tf.train.latest_checkpoint()来自动获取最后一次保存的模型。...下面代码是简单的保存和读取模型:(不包括加载图数据) import tensorflow as tf import numpy as np import os #用numpy产生数据 x_data
前言 尝试过迁移学习的同学们都知道,Tensorflow的模型保存加载有不同格式,使用方法也不一样,新手会觉得乱七八糟,所以本文做一个梳理。从模型的保存到加载,再到使用,力求理清这个流程。 1....保存 Tensorflow的保存分为三种:1. checkpoint模式;2. pb模式;3. saved_model模式。...那么要如何保存呢? # 只有sess中有变量的值,所以保存模型的操作只能在sess内 checkpoint_dir = "....模型保存的方法是 # 只有sess中有变量的值,所以保存模型的操作只能在sess内 version = "1/" saved_model_dir = "....Fine-tune 最后不管保存还是加载模型,多数情况都是为了能够进行迁移学习。其实大部分无非就是将模型加载进来之后,使用某一个节点的值,作为我们后续模型的输入呗。
[阿里DIN] 模型保存,加载和使用 0x00 摘要 Deep Interest Network(DIN)是阿里妈妈精准定向检索及基础算法团队在2017年6月提出的。...本系列文章会解读论文以及源码,顺便梳理一些深度学习相关概念和TensorFlow的实现。 本文是系列第 12 篇 :介绍DIN模型的保存,加载和使用。...0x01 TensorFlow模型 1.1 模型文件 TensorFlow模型会保存在checkpoint相关文件中。...当某个保存的TensorFlow模型文件被删除时,这个模型所对应的文件名也会从checkpoint文件中删除。...Op节点从图中剥离掉; 使用tf.train.writegraph保存图,这个图会提供给freeze_graph使用; 再使用freeze_graph重新保存到指定的文件里; 0x02 DIN代码 因为
Saver tensorflow 中的 Saver 对象是用于 参数保存和恢复的。如何使用呢? 这里介绍了一些基本的用法。...keys: saver = tf.train.Saver({v.op.name: v for v in [v1, v2]}) #注意,如果不给Saver传var_list 参数的话, 他将已 所有可以保存的...这里使用了三种不同的方式来创建 saver 对象, 但是它们内部的原理是一样的。我们都知道,参数会保存到 checkpoint 文件中,通过键值对的形式在 checkpoint中存放着。...checkpoint 中保存了什么 from tensorflow.python.tools.inspect_checkpoint import print_tensors_in_checkpoint_file...2.0 1.0,如我们所望 我们发现,其实 创建 saver对象时使用的键值对就是表达了一种对应关系: save时, 表示:variable的值应该保存到 checkpoint文件中的哪个 key下
假如我们得到了如下的checkpoints, [sz71z5uthg.png] 上面的文件主要可以分成三类:一种是在保存模型时生成的文件,一种是我们在使用tensorboard时生成的文件,还有一种就是...plugins这个文件夹,这个是使用capture tpuprofile工具生成的,该工具可以跟踪TPU的计算过程,并对你的模型性能进行分析,这里就不想详细介绍了。...graph.pbtxt: 这其实是一个文本文件,保存了模型的结构信息,部分信息如下所示: node_def { name: "FixedLengthRecordDataset/input_pipeline_task10...保存模型时生成的文件 checkpoint: 其实就是一个txt文件,存储的是路径信息,我们可以看一下它的内容是什么: model_checkpoint_path: "model.ckpt-5000"...model.ckpt-*.data-*: 保存了模型的所有变量的值,TensorBundle集合。
本文介绍两种持久化保存模型的方法: 在介绍这两种方法之前,我们得先创建并训练好一个模型,还是以mnist手写数字识别数据集训练模型为例: import tensorflow as tf from tensorflow...save()方法可以将模型保存到一个指定文件中,保存的内容包括: 模型的结构 模型的权重参数 通过compile()方法配置的模型训练参数 优化器及其状态 model.save('mymodels/mnist.h5...') 使用save()方法保存后,在mymodels目录下就会有一个mnist.h5文件。...需要使用模型时,通过keras.models.load_model()方法从文件中再次加载即可。...新加载出来的new_model在结构、功能、参数各方面与model是一样的。 通过save()方法,也可以将模型保存为SavedModel 格式。
前言 首先,我们从一个直观的例子,讲解如何实现Tensorflow模型参数的保存以及保存后模型的读取。 然后,我们在之前多层感知机的基础上进行模型的参数保存,以及参数的读取。...该项技术可以用于Tensorflow分段训练模型以及对经典模型进行fine tuning(微调) Tensorflow 模型的保存与读取(直观) 模型参数存储 import tensorflow as.../save/model.ckpt 模型存储的文件格式如下图所示: ?...模型存储文件 模型参数读取 import tensorflow as tf v1 = tf.Variable(tf.random_normal([1,2]), name="v1") v2 = tf.Variable...模型的保存与读取(多层感知机) 导入数据集 from __future__ import print_function # Import MINST data from tensorflow.examples.tutorials.mnist
在这部分,我们将要展示给你如何保存你的模型以备未来使用。例如,你可能想要使用模型来预测输出并且自动做出决策。...Fit the model that we will persist.拟合一个我们要保存的模型 2....following code can be used:为了使用joblib来保存模型,将使用以下代码: from sklearn import datasets, tree X, y = datasets.make_classification...之前的代码将被保存为对象的状态,它能被重用为一个scikit-learn对象。值得注意的是不同类型的模型会有不同复杂级别的模型状态。...为了简单的原则,想象一下我们所有需要保存的就是给定输入预测输出的方法。好了,因为回归模型会比较简单,少量的矩阵代数,并且我们已经做过。
领取专属 10元无门槛券
手把手带您无忧上云