首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Tensorflow中的placeholder和feed_dict的使用

TensorFlow 支持占位符placeholder。占位符并没有初始值,它只会分配必要的内存。在会话中,占位符可以使用 feed_dict 馈送数据。...feed_dict是一个字典,在字典中需要给出每一个用到的占位符的取值。...在训练神经网络时需要每次提供一个批量的训练样本,如果每次迭代选取的数据要通过常量表示,那么TensorFlow 的计算图会非常大。因为每增加一个常量,TensorFlow 都会在计算图中增加一个结点。...所以说拥有几百万次迭代的神经网络会拥有极其庞大的计算图,而占位符却可以解决这一点,它只会拥有占位符这一个结点。...返回:Tensor类型 例1 import tensorflow as tf x = tf.placeholder(tf.string) with tf.Session() as sess:

57710
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用TensorFlow的经验分享

    模型保存: 作用:将训练好的模型保存起来。 7. 模型部署: 作用:将保存的模型部署到服务器或本地以便提供使用。 三、搭建开发环境 目前我学习的是Anaconda+tensorflow。 1....目前下载的Anaconda自带python为3.8,通过conda下载tensorflow2.3.0后可能无法使用gpu训练,除非自己使用pip下载tensorflow与CUDA,建议虚环境使用python3.7...,tensorflow使用tensorflow2.1.0。...(Bypass)设置,既大幅度减少了网络的参数量,又在一定程度上缓解了梯度消失问题的产生 五、学习Tensorflow1.0与tensorflow2.0 1....学习搭建模型 1.模型的层的搭建学习:tensorflow.keras.layers库 2.设置优化器学习:tensorflow.keras.optimizers库 3.构建模型学习:tensorflow.keras.models

    1.4K12

    【TensorFlow】DNNRegressor 的简单使用

    TensorFlow 的话就比较好理解:我们是先定义一些计算图,这时候并不真正的传入数据,然后在训练的时候去执行这个计算图,也就是说这时候才开始将真正的数据穿进去。...定义 FeatureColumn TensorFlow 使用 FeatureColumn 来表示数据集中的一个的特征,我们需要根据特征类型(连续或者分类)把原来的特征都转换成 FeatureColumn...,说明你在使用 GPU 计算(默认行为)且你的 GPU 可用显存不足,TensorFlow 总是试图为自己分配全部显存,例如你的显存是 2GB,那么他就会试图为自己分配 2GB,但是一般情况下你的显存不会一点都不被其他程序占用的...,导致 TensorFlow 分配显存失败。...解决办法是在定义 regressor 的时候使用 config 参数中的 gpu_memory_fraction 来指定分配给 TensorFlow 的显存大小(比例): # log_device_placement

    2.8K90

    使用TensorFlow 2.0的简单BERT

    作者 | Gailly Nemes 来源 | Medium 这篇文章展示了使用TensorFlow 2.0的BERT [1]嵌入的简单用法。...由于TensorFlow 2.0最近已发布,该模块旨在使用基于高级Keras API的简单易用的模型。在一本很长的NoteBook中描述了BERT的先前用法,该NoteBook实现了电影评论预测。...在这篇文章中,将看到一个使用Keras和最新的TensorFlow和TensorFlow Hub模块的简单BERT嵌入生成器。所有代码都可以在Google Colab上找到。...在这里,仅需几个步骤即可实现该模块的用法。 Module imports 将使用最新的TensorFlow(2.0+)和TensorFlow Hub(0.7+),因此,可能需要在系统中进行升级。...在bert_layer从TensorFlow集线器返回与针对整个输入序列的表示不同的合并输出。 为了比较两个嵌入,使用余弦相似度。样本语句“这是一个不错的语句。”

    8.5K10

    TensorFlow入门 - 使用TensorFlow甄别图片中的时尚单品

    https://blog.csdn.net/Solo95/article/details/80067525 使用TensorFlow甄别图片中的时尚单品 MNIST数据集是一个经典的机器学习数据集...本例并没有直接使用MNIST数据集,为了使我们的实现更有趣一点,我们采用了Zalando发布的fashion-mnist数据集。...以上5张图片是使用深度分类器实际进行的5次预测,你可以看到5件衣服以及顶部使用数字标明的衣服种类。实际标签依次为0、0、9、8、5,我们的预测结果为0、0、9、8、5。...事实上,深度分类器的hidden_units参数对预测结果的准确度有着莫大的影响。该参数指定使用的深度神经网络使用几层hidden layer以及每个layer有几个神经元。...你可以尝试改变该参数以取得更高的准确率。我将在下一个例子里使用tensorboard详细说明训练过程,以及参数将对训练结果造成怎样的影响。

    46630

    TensorFlow核心使用要点

    TensorFlow的流行让深度学习门槛变得越来越低,只要你有Python和机器学习基础,入门和使用神经网络模型变得非常简单。...TensorFlow支持 Python和C++两种编程语言,再复杂的多层神经网络模型都可以用Python来实现,如果业务使用其他编程也不用担心,使用跨语言的gRPC或者HTTP服 务也可以访问使用TensorFlow...总之呢就是,TensorFlow是非常有意义且易入门的深度学习框架~想学习人工智能,似乎也不是辣么的难哟~ 下面小梦就为大家介绍几种TensorFlow的核心使用方法及要点,希望对所有对深度学习感兴趣的童鞋们有所助益...训练前需要准备 样本数据和测试数据,一般数据文件是空格或者逗号分隔的CSV文件,但TensorFlow建议使用二进制的TFRecords格式,这样可以支持QueuRunner和 Coordinator进行多线程数据读取...TensorFlow底层使用了python-gflags项目,然后封装成tf.app.flags接口,使用起来非常简单和直观,在实际项目中一般会提前定义命令行参数, 尤其在后面将会提到的Cloud Machine

    95770

    TensorFlow 使用变量共享

    参考: https://www.tensorflow.org/programmers_guide/variable_scope 举例说明 TensorFlow中的变量一般就是模型的参数。...通常的做法是将这些变量设置为全局变量。但是存在的问题是打破封装性,这些变量必须文档化被其他代码文件引用,一旦代码变化,调用方也可能需要变化。还有一种保证封装性的方式是将模型封装成类。...不过TensorFlow提供了Variable Scope 这种独特的机制来共享变量。...return conv_relu(relu1, [5, 5, 32, 32], [32]) 最后在image_filters这个作用域重复使用第一张图片输入时创建的变量,调用函数reuse_variables...tf.get_variable("v", [1]) w1 = tf.get_variable("w", [1]) assert v1 is v assert w1 is w 不管作用域如何嵌套,当使用

    1.3K10

    TensorFlow基本使用教程

    我个人建议,想要在工业界发展的,还是学习TensorFlow框架为主,当然Pytoch也可以选择。 TensorFlow特点 使用图 (graph) 来表示计算任务....使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据. 当会话定义完成后就可以真正运行定义好的计算了....在TensoorFlow中,所有的操作op,变量都视为节点 TensorFlow框架原理综述 TensorFlow 是一个编程系统, 使用图来表示计算任务。...在构建阶段, op 的执行步骤 被描述成一个图. 在执行阶段, 使用会话执行执行图中的 op。...注意,类似卷积神经网络只在最后的全连接层使用dropout,循环神经网络一般只在不同层循环体结构之间使用dropout,而不在同一层的循环体结构之间使用。

    1.9K40

    Pycharm安装使用TensorFlow

    ,或者是NVIDIA 730之类的台式机显卡,无法使用最新的深度学习包,以及一些CUDA,cuDNN等,这就直接导致了无法使用TensorFlow 2.4.0或更高本版,而Keras每个版本依赖的TensorFlow...的setting中将system interpreter选为Anaconda中的python编译器,并且安装对应的Keras和TensorFlow,查看版本对应关系可以参考https://docs.floydhub.com.../guides/environments/,安装方法可以直接在pycharm的terminal中使用pip安装,比如安装TensorFlow 2.1.0版本可以使用命令pip install tensorflow...==2.1.0,安装Keras 2.3.1可以使用命令pip install keras==2.3.0 4.这个时候可以使用一下代码测试keras和TensorFlow安装是否成功 import tensorflow...CPU版本学习机器学习过程,因此电脑没有独立显卡也可以训练,即便有独立显卡,如果要使用TensorFlow GPU版本,还需要安装Visual Studio2015,显卡对应的CUDA,以及对应的cuDNN

    3K40

    Task 3 使用TensorFlow

    这两个问题的答案就是 选择合适的损失函数, 此处使用距离方差。 选择合适的优化策略, 有最小二乘法和梯度下降。 1.1.1 距离方差 距离方差的定义是: ?...最大似然估计就是要求得使 l(θ) 取最大值时的 θ ,这里可以使用梯度上升法求解。我们稍微变换一下: ? 因为乘了一个负的系数−1/m,然后就可以使用梯度下降算法进行参数求解了。...所以要考虑这个边界的问题。卷积的边界处理有两种方式: 一、丢掉边界,也就是就按右边那个缩小的矩阵来。 二、使用全0填充,就如下图所示 ?...通过对图片多次卷积和池化后,最后留下的矩阵大小已大大缩小,且保留了原图片的特征,于是就可以使用全连接层处理了。 在分类问题中的最后一层,要使用softmax函数进行归一化处理。 ?...因为这份代码的构建格式与《tensorflow实战google深度学习框架》第六章所提到的LeNet-5格式基本相似。

    47350

    【tensorflow2.0】AutoGraph的使用规范

    有三种计算图的构建方式:静态计算图,动态计算图,以及Autograph。 TensorFlow 2.0主要使用的是动态计算图和Autograph。 动态计算图易于调试,编码效率较高,但执行效率偏低。...我们将着重介绍Autograph的编码规范和Autograph转换成静态图的原理。 并介绍使用tf.Module来更好地构建Autograph。 本篇我们介绍使用Autograph的编码规范。...一,Autograph编码规范总结 1,被@tf.function修饰的函数应尽可能使用TensorFlow中的函数而不是Python中的其他函数。...例如使用tf.print而不是print,使用tf.range而不是range,使用tf.constant(True)而不是True. 2,避免在@tf.function修饰的函数内部定义tf.Variable...二,Autograph编码规范解析 1,被@tf.function修饰的函数应尽量使用TensorFlow中的函数而不是Python中的其他函数。

    60630

    使用Tensorflow实现数组的部分替换

    简单描述一下场景:对于一个二维的整型张量,假设每一行是一堆独立的数,但是对于每一行的数,都有一个设定好的最小值的。...我们需要做的是,对于每一行,找到第一次小于最小值的位置,并将该位置起直到行末部分的数字替换为0。是不是有点抽象?...tensorflow不能对张量进行直接赋值操作,如果你尝试修改一个tensor中的内容,会报下面的错误: TypeError: 'Tensor' object does not support item...feed_dict = { choose:[[5,4,3,0,1],[2,3,0,4,2],[2,3,5,4,2]], minValue:[[3],[2],[2]]} 得到每行第一个小于最小值的位置的索引...这里,我们首先判断每个位置的数是否小于最小值,如果小于最小值,返回1,大于等于最小值,返回0,那么使用arg_max函数就可以返回第一个小于最小值的位置的索引: x = tf.tile(tf.reshape

    3.7K20

    使用tensorflow进行音乐类型的分类

    我们发现特征工程是至关重要的,而领域知识可以真正提高性能。 在描述了所使用的数据源之后,我对我们使用的方法及其结果进行了简要概述。...在本文的最后一部分,我将花更多的时间来解释googlecolab中的TensorFlow框架如何通过TFRecord格式在GPU或TPU运行时高效地执行这些任务。...TensorFlow实现 TensorFlow是一个非常强大的工具,可以在规模上构建神经网络,尤其是与googlecolab的免费GPU/TPU运行时结合使用。...我们使用TensorFlow内置函数和Python函数(与tf.py_函数,对于在数据管道中使用Python函数非常有用)。...本节中的大部分代码都改编自TensorFlow官方文档以及本教程中有关音频管道的内容。

    2.5K20

    tensorflow笔记(三)之 tensorboard的使用

    tensorflow笔记(三)之 tensorboard的使用 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7429344....html 前言 这篇博客将介绍tensorflow当中一个非常有用的可视化工具tensorboard的使用,它将对我们分析训练效果,理解训练框架和优化算法有很大的帮助。...还记得我的第一篇tensorflow博客上的的例子吗?这篇博客会以第一篇tensorflow博客的tensorboard图为例进行展开。...实践2---线性拟合(一) 上面那一个是小试牛刀,比较简单,没有任何训练过程,下面将第一篇tensorflow笔记中的第二个例子来画出它的流动图(哦,对了,之所有说是流动图,这是由于tensorflow...,两者差不多,使用方式可以参考上面代码,一般是第一项字符命名,第二项就是要记录的变量了,最后用tf.summary.merge_all对所有训练图进行合并打包,最后必须用sess.run一下打包的图,并添加相应的记录

    45750
    领券