在本文中,我将向您介绍TensorFlow。阅读本文后,您将能够了解神经网络的应用,并使用TensorFlow来解决现实生活中的问题。本文将要求您了解神经网络的基础知识,并熟悉编程。...什么是TensorFlow? 让我们从官方的定义开始, “TensorFlow是一个使用数据流图进行数值计算的开源软件库。...# import tensorflow 在TensorFlow中实现神经网络 注意:我们可以使用不同的神经网络架构来解决这个问题,但为了简单起见,我们深入实施了前馈多层感知器。...如您所知,我们将使用TensorFlow制作神经网络模型。所以你应该首先在系统中安装TensorFlow。根据您的系统规格,请参阅官方安装指南进行安装。 我们将按照上述模板。...TensorFlow与其他库 TensorFlow建立在与使用数学计算图的Theano和Torch类似的原理。但是,随着分布式计算的额外支持,TensorFlow可以更好地解决复杂的问题。
通过本文,你将理解神经网络的应用,并能够使用TensorFlow解决现实生活中的问题。本文需要你了解神经网络的基础知识并熟悉编程。...现在的主要问题变成了何时使用,而何时不使用神经网络。现在这个领域就像金矿,每天都有许多发现。...我会给TensorFlow一个简单的定义。TensorFlow不过是对numpy(一个广为使用的Python数学运算库)做了一些变形而已。...让我们首先回忆下我们通过这篇文章对神经网络的了解。 神经网络的典型实现如下: 确定要使用神经网络体系结构 将数据传输到模型 在模型中,数据首先被分批以便可以被分批提取。...正如本文的主题,我们将使用TensorFlow来建立一个神经网络模型。所以你应该先在你的系统中安装TensorFlow。 根据你的系统情况,参阅 官方安装指南进行安装。
为了评估这些网络,研究者使用从统一随机分布中采样的单个共享权重参数来连接网络层,并评估期望性能。...受随机初始化 CNN 和 LSTM 的启发,该研究旨在搜索权重无关的神经网络,即这些具备强归纳偏置的网络可以使用随机权重执行不同任务。...该研究没有采用优化固定网络权重的方式,而是优化在大范围权重值上都有良好性能的架构。研究者证明,该方法可生成使用随机权重参数执行不同连续控制任务的网络。 ?...图 1:权重无关神经网络示例:二足行走智能体(左)、赛车(右)。研究者通过降低权重重要性的方式搜索架构。网络使用单一的共享权重值。...在评估网络性能时,研究者没有选择使用最优权重值的网络,而从随机分布中抽取权重值。用权重采样取代权重训练可以确保性能只与网络拓扑结构有关。
编者按:本文节选自图书《TensorFlow实战》第五章,本书将重点从实用的层面,为读者讲解如何使用TensorFlow实现全连接神经网络、卷积神经网络、循环神经网络,乃至Deep Q-Network。...卷积神经网络提取的特征则可以达到更好的效果,同时它不需要将特征提取和分类训练两个过程分开,它在训练时就自动提取了最有效的特征。...卷积神经网络相比传统的机器学习算法,无须手工提取特征,也不需要使用诸如SIFT之类的特征提取算法,可以在训练中自动完成特征的提取和抽象,并同时进行模式分类,大大降低了应用图像识别的难度;相比一般的神经网络...图5-4 LeNet-5结构示意图 TensorFlow实现简单的卷积网络 本节将讲解如何使用TensorFlow实现一个简单的卷积神经网络,使用的数据集依然是MNIST,预期可以达到99.2%左右的准确率...("MNIST_data/", one_hot=True) sess = tf.InteractiveSession() 接下来要实现的这个卷积神经网络会有很多的权重和偏置需要创建,因此我们先定义好初始化函数以便重复使用
编者按:本文节选自图书《TensorFlow实战》第五章,本书将重点从实用的层面,为读者讲解如何使用TensorFlow实现全连接神经网络、卷积神经网络、循环神经网络,乃至Deep Q-Network。...卷积神经网络提取的特征则可以达到更好的效果,同时它不需要将特征提取和分类训练两个过程分开,它在训练时就自动提取了最有效的特征。...卷积神经网络相比传统的机器学习算法,无须手工提取特征,也不需要使用诸如SIFT之类的特征提取算法,可以在训练中自动完成特征的提取和抽象,并同时进行模式分类,大大降低了应用图像识别的难度;相比一般的神经网络...图5-4 LeNet-5结构示意图 TensorFlow实现简单的卷积网络 本节将讲解如何使用TensorFlow实现一个简单的卷积神经网络,使用的数据集依然是MNIST,预期可以达到99.2%左右的准确率...接下来要实现的这个卷积神经网络会有很多的权重和偏置需要创建,因此我们先定义好初始化函数以便重复使用。我们需要给权重制造一些随机的噪声来打破完全对称,比如截断的正态分布噪声,标准差设为0.1。
本文主要是使用tensorflow和mnist数据集来训练神经网络。 #!.../usr/bin/env python # _*_ coding: utf-8 _*_ import tensorflow as tf from tensorflow.examples.tutorials.mnist...# 下面定义的神经网络只有一层W*x+b # 定义输入数据placeholder,不定义输入样本的数目——None,但定义每个样本的大小为784 x = tf.placeholder(tf.float32..., [None, 784]) # 定义神经网络层的权重参数 W = tf.Variable(tf.zeros([784, 10])) # 定义神经网络层的偏置参数 b = tf.Variable(tf.zeros...= tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) # 定义神经网络的训练步骤,使用的是梯度下降法,学习率为
tf.contrib.learn Quickstart TensorFlow的机器学习高级API(tf.contrib.learn)使配置、训练、评估不同的学习模型变得更加容易。...在这个教程里,你将使用tf.contrib.learn在Iris data set上构建一个神经网络分类器。...代码有一下5个步骤: 在TensorFlow数据集上加载Iris 构建神经网络 用训练数据拟合 评估模型的准确性 在新样本上分类 Complete Neural Network Source Code...这里,你讲配置深度神经网络分类器来拟合Iris数据,你可以用tf.contrib.learn.DNNClassifier作为示例: # Specify that all features have real-value...pipeline tf.contrib.learn API使用输入函数,创建TensorFlow节点来生成模型数据。
本文是对tensorflow官方入门教程的学习和翻译,展示了创建一个基础的神经网络模型来解决图像分类问题的过程。具体步骤如下 1....构建神经网络 利用keras的高级API可以方便的构建神经网络模型,这里构建一个3层的神经网络,依次为输入层,隐藏层,输出层,代码如下 >>> model = keras.Sequential([ .....使用模型进行预测 为了更好的显示预测结果,在模型的后面添加一层softmax层,表示每个类别对应的概率,代码如下 >>> probability_model = tf.keras.Sequential(...4.86064877e-09, 9.93281841e-01], dtype=float32) >>> np.argmax(predictions[0]) 9 >>> test_labels[0] 9 上述代码完整展示了神经网络模型的构建...,训练,预测等过程,可以看到,通过tensorflow的API可以简单快速的构建一个神经网络模型。
输入层、隐藏层、输出层的数目分别为2、3、1; 隐藏层和输出层的激活函数使用的是 ReLU; 训练的样本总数为 512,每次迭代读取的批量为 10; 交叉熵为损失函数,并使用 Adam 优化算法进行权重更新...import tensorflow as tf from numpy.random import RandomState batch_size= 10 w1=tf.Variable(...w2=tf.Variable(tf.random_normal([ 3 , 1 ],stddev= 1 ,seed= 1 )) # None 可以根据batch 大小确定维度,在shape的一个维度上使用...cross_entropy=-tf.reduce_mean(y*tf.log(tf.clip_by_value(yhat, 1e-10 , 1.0 ))) # Adam提供学习速率和损失函数两个参数,更新权重...(cost_function) 是进行训练的函数,其中采用的是 Adam 优化算法更新权重,并且需要提供学习速率和损失函数这两个参数; 后面就是生成训练数据,X=rdm.rand(512,2) 表示随机生成
MachineLP的Github(欢迎follow):https://github.com/MachineLP 我们在搭建模型的时候,受到一些收敛条件的限制,像wgan_loss需要讲权重设置在[-0.01... 其中,'Discriminator_dcgan' 是net的名字,其下一层包含很多变量的名字。...然后,遍历每一个变量,将其限定在一定的范围:即小于-1的值设定在-1,大于1的值设定在1。..._ = session.run(clip_disc_weights) 总结,wgan_loss不加入权重限制不会收敛,同时wgan时候经过严格的理论推导,当理论不充分时,在使用的时候需要多实验室...,实验出好的结果,可以再找理论支撑嘛,哈哈丷
在这篇文章中,我们将介绍票据数字化的问题,即从纸制收据(如医疗发票、门票等)中以标签的形式提取必要和重要的信息。...图神经网络将使用OCR 的输出,即收据上的边界框用于创建输入图。每个文本/边界框都被认为是一个节点,边缘连接的创建可以有多种方式。...比如它的字体很大可以预测文本属于 STORE_NAME 类别, 因为通常商店名称字体比收据上的其他文本大。 这两种类型的嵌入结合起来创建一个新的融合嵌入以更好地理解数据,并用作图神经网络的节点输入。...A、x 和 y 将用于训练基于图的神经网络模型,该模型将学习在可能的类别中对每个节点进行分类。...[15]对与节点分类相关的理论进行了研究。 该模型在准确性、F1 分数等方面从测试集提供了令人满意的结果。它可用于现实世界数据,从收据扫描件中提取信息,使用提取文本预测其可能的类别。
本文将使用高层API:tf.contrib.learn 来构建一个分类神经网络,将它放在“鸢尾花数据集”上进行训练,并且估计模型,使得模型能根据特征(萼片和花瓣几何形状)预测出花的种类。...01 加载鸢尾花数据到TensorFlow上 首先介绍一下我们今天要使用的数据集: 鸢尾花数据集:Iris data set 由150个样本组成。...于是,这里我们就来使用tf.contrib.learn配置一个深层神经网络的分类模型,只需要了了几行代码~ # Specify that all features have real-value datafeature_columns...另外,我们的数据集中有4个特征,故传入参数dimension=4. 接着,以上代码使用了tf.contrib.learn.DNNClassifier这个函数来直接构建DNN模型。...它是从Tensorflow官方Scikit Flow直接迁移过来的,其使用的风格与Scikit-learn相似(用python写机器学习的小伙伴应该很熟悉)。
读了将近一个下午的TensorFlow Recurrent Neural Network教程,翻看其在PTB上的实现,感觉晦涩难懂,因此参考了部分代码,自己写了一个简化版的Language Model...并且使用语言模型来生成新的文本。 在本文中,我们更加关注的是,如何使用RNN来推测下一个词。 数据准备 TensorFlow的官方文档使用的是Mikolov准备好的PTB数据集。...batch_size: 神经网络使用随机梯度下降,数据按多个批次输出,此为每个批次的数据量 num_steps: 每个句子的长度,相当于之前描述的n的大小,这在循环神经网络中又称为时序的长度。...为了满足随机梯度下降的需要,我们还需要把数据整理成一个个小的批次,每次喂一个批次的数据给TensorFlow来更新权重,这样,数据就整理为[batch_len, batch_size, num_steps...cost = tf.reduce_mean(cross_entropy) self.cost = cost def optimize(self): """使用
前面 写了一篇用 TensorFlow 实现 CNN 的文章,没有实现 TensorBoard,这篇来加上 TensorBoard 的实现,代码可以从 这里 下载。...上面是引用了官网的介绍,意思就是说 TensorBoard 就是一个方便你理解、调试、优化 TensorFlow 程序的可视化工具,你可以可视化你的 TensorFlow graph、学习参数以及其他数据比如图像...你可以使用 tf.summary.scalar 记录准确率、损失等数据,使用 tf.summary.histogram 记录参数的分布情况。.../tensorboard/log/', graph=tf.get_default_graph()) 还可以可以使用tf.train.Saver 保存模型,TensorBoard 可以显示每一步的运行时间以及内存使用情况...Step 100 的各节点计算时间(需要使用 tf.train.Saver()): ? Step 100 的各节点内存消耗(需要使用 tf.train.Saver()): ?
这就是零初始化无法工作的原因。 随机初始化 现在我们知道权重必须是不同的,下一个想法是随机初始化这些权重。随机初始化比零初始化好得多,但是这些随机数可以是任意数吗? 假设你使用的是s型非线性。...我们希望Z的均值是0,标准差是1。(从技术上讲,Z是ReLu等非线性激活后的结果) 为什么均值为0,标准差为1这么重要? 考虑一个有100层的深度神经网络。在每一步,权重矩阵乘以来自前一层的激活。...下一部分是迭代一个小批处理并缩放权重,以便激活的方差为1。作者断言,在大范围内,小批量大小对方差的影响可以忽略不计。 在论文中,作者列出了以下初始化步骤。 使用单位方差将权重初始化为高斯噪声。...使用SVD或QR将它们分解为正交坐标。 使用第一个微型批处理在网络中进行迭代,并在每次迭代比例时权重以使输出方差接近1。重复直到输出方差为1或发生最大迭代。...转移学习 转移学习是一种在我们的新模型中使用已经训练有素的模型进行权重的方法,该模型已经针对相似的任务进行了训练。这些权重已经学习了很多有用的信息,我们可以针对我们的特定目标进行微调!
参数共享或权重复制是深度学习中经常被忽略的领域。但是了解这个简单的概念有助于更广泛地理解卷积神经网络的内部。卷积神经网络(cnn)能够使那些通过网络馈送的图像在进行仿射变换时具有不变性。...卷卷积层的输出维数有一个深度分量,如果我们对输出的每一段进行分割,我们将得到一个二维平面的特征映射。在单个二维平面上使用的过滤器包含一个权重,该权重在同一平面上使用的所有过滤器之间共享。...(包括偏差) 计算使用权值共享的训练参数(包括偏差)的数量 下表描述了来自AlexNet和LeNet CNN架构的信息,这些信息将用于得出卷积层内训练参数/权重的数量。...= 290,400单位 conv层内的训练参数或权重数(不使用权值共享)= 290400 *((11* 11 * 3)+ 1偏差)=105,415,600 使用权值共享的训练参数或权重的数量= 96...*特征图的数量= 24*24*6(转换输出量)= 3,456单位 conv层内的训练参数或权重数(不使用权值共享)= 3456 *((5 * 5 * 1)+ 1偏差)=89,856 使用权值共享的训练参数或权重的数量
近几年,随着深度学习的大火,越来越多的人选择去入门、学习、钻研这一领域,正确初始化神经网络的参数对神经网络的最终性能有着决定性作用。...目前训练神经网络模型一般采用的是反向传播算法,即将输入的数据进行正向传递得到输出,通过现有输出和期望输出的差异计算损失函数,计算损失函数对参数的梯度,并将误差沿着梯度的负方向反向传递,神经网络权值参数的更新值与梯度成比例...为了计算出误差对w1的偏导,我们使用链式规则可以得到: where and 从这个式子我们可以看到,如果权重参数设置过大,.根据链式相乘可得,前面的网络层比后面的网络层梯度变化更快,更容易发生梯度爆炸的问题...作为激活函数,它最大的导数值才0.25) 总之,使用不适当的值去初始化权重将会导致网络训练的发散或者缓慢,那么我们应该如何去初始化呢?...实验设置: a)激活函数:使用为激活函数,偏置项为0(函数的特点:当时,导数为0) b)实验数据:已经Normalized的Mnist数据集,数据可以通过导入tensorflow.examples.tutorials.mnist
前面 有篇博文讲了多层感知器,也就是一般的前馈神经网络,文章里使用 CIFAR10 数据集得到的测试准确率是 46.98%。...今天我们使用更适合处理图像的卷积神经网络来处理相同的数据集 - CIFAR10,来看下准确率能达到多少。...本文代码基于 TensorFlow 的官方文档 做了些许修改,完整代码及结果图片可从 这里 下载。...目前在此数据集上做的实验在没有数据增加的情况下最低的错误率是 18%,数据增加的情况下最低的错误率是 11%,都是采用的卷积神经网络(CNN)的结构。 数据集中的图像和分类大致是这样的: ?...,上图是最好的结果的时候,其他结果图的下载链接和上面一样,测试准确率大约为 60%,其实这个准确率并不高,和 TensorFlow 的官方文档 所得到的 86% 还差一段距离,和官方文档的差距在于我并没有对数据进行更多的预处理
本文是对tensforflow官方入门教程的学习和翻译,展示了创建一个基础的卷积神经网络模型来解决图像分类问题的过程。具体步骤如下 1....加载数据集 tensorflow集成了keras这个框架,提供了CIFAR10数据集,该数据集包含了10个类别共6万张彩色图片,加载方式如下 >>> import tensorflow as tf >>...构建卷积神经网络 通过keras的Sequential API来构建卷积神经网络,依次添加卷积层,池化层,全连接层,代码如下 >>> model = models.Sequential() >>> model.add...训练模型 使用训练集训练模型,代码如下 >>> history = model.fit(train_images, train_labels, epochs = 10, validation_data...7s - loss: 0.8483 - accuracy: 0.7119 >>> print(test_acc) 0.711899995803833 准确率达到了70%,对于一个由几行代码快速构建的初步卷积神经网络模型而言
领取专属 10元无门槛券
手把手带您无忧上云