PS:了解了上期详细内容,请在自定义菜单栏中点击“灯塔数据”—“技术连载”进行查看;或者滑到文末【往期推荐】查看。 No.70 适于迭代并行计算的平台——Spark初探 Mr....在 MapReduce 逐渐被研究人员放弃的时代,大量新平台的出现也让我们眼前一亮,像 Spark 和 Trinity 这样的新一代大数据并行计算平台就是这个时代的产物,它们各有特点,在各自着重注意的一些方面上...Apache Spark 官方网站 ? 微软研究院 Trinity 官方网站 在这里我们就以非常友好、简单、易用的 Spark 平台为例,来了解一下如何使用新兴的并行大数据平台。...用户和初学者使用起来非常的友好。 前面我们提到过,Hadoop 并行计算比较慢的一个重要原因就是它不擅长于迭代计算的处理。...不过,如果这个过程要进行多个轮次,比如做图算法、数据挖掘算法等,那么迭代几十次甚至上百次都是非常正常的。
二、Spark的架构 ? Spark架构图 1.Spark Core 包含Spark的基本功能;尤其是定义RDD的API、操作以及这两者上的动作。...其他Spark的库都是构建在RDD和Spark Core之上的 2.Spark SQL 提供通过Apache Hive的SQL变体Hive查询语言(HiveQL)与Spark进行交互的API。...每个数据库表被当做一个RDD,Spark SQL查询被转换为Spark操作。 3. Spark Streaming 对实时数据流进行处理和控制。...Spark Streaming允许程序能够像普通RDD一样处理实时数据。 4.MLlib 一个常用机器学习算法库,算法被实现为对RDD的Spark操作。...这个库包含可扩展的学习算法,比如分类、回归等需要对大量数据集进行迭代的操作。 5.GraphX 控制图、并行图操作和计算的一组算法和工具的集合。
Pandas 是我们经常使用的一种工具,用于处理数据,还有 seaborn 和 matplotlib用于数据可视化。...PandasGUI 是一个库,通过提供可用于制作 安装 PandasGUI 使用pip 命令像安装任何其他 python 库一样安装 PandasGUI。...在 Pandas 中,我们可以使用以下命令: titanic[titanic['age'] >= 20] PandasGUI 为我们提供了过滤器,可以在其中编写查询表达式来过滤数据。...上述查询表达式将是: Pandas GUI 中的统计信息 汇总统计数据为您提供了数据分布的概览。在pandas中,我们使用describe()方法来获取数据的统计信息。...PandasGUI 中的数据可视化 数据可视化通常不是 Pandas 的用途,我们使用 matplotlib、seaborn、plotly 等库。
但是设置后可能会出现问题,由于我连接的数据库是通过inspactdb的方法得到的model。...后来发现问题可能出在路由表上,按照DATABASE_APPS_MAPPING映射之后,django默认的表如果要写入可能会找不到数据库。...hsmall', 'iot_biz': 'iot_biz', 'mall': 'mall', 'hsuser': 'hsuser', } 如果要解决这个问题可以修改router代码,在映射关系内找不到对应的数据库的情况下返回默认数据库连接即可...: ☆文章版权声明☆ * 网站名称:obaby@mars * 网址:https://h4ck.org.cn/ * 本文标题: 《django使用多个数据库》 * 本文链接:https://...请遵从 《署名-非商业性使用-相同方式共享 2.5 中国大陆 (CC BY-NC-SA 2.5 CN) 》许可协议。
大家无论在使用pandas、numpy或是R的时候,首先会做的就是处理数据,尤其是将列表,转成成合适的形状。...这种结构,也是一般关系型数据库的数据结构。 透视表 透视表没有一个明确的定义,一般是观念上是指,为了方便进行数据分析,而对数据进行一定的重排,方便后续分析,计算等操作。...通过一般的定义,我们能看出,透视表主要用于分析,所以,一般的场景我们都会先对数据进行聚合,以后再对数据分析,这样也更有意义。...为了展示数据好看一点,我特意使用语句 r.na().fill(0) 将空值`null`替换成了0。...为了防止OOM的情况,spark对pivot的数据量进行了限制,其可以通过spark.sql.pivotMaxValues 来进行修改,默认值为10000,这里是指piovt后的列数。
使用Spark读取Hive中的数据 2018-7-25 作者: 张子阳 分类: 大数据处理 在默认情况下,Hive使用MapReduce来对数据进行操作和运算,即将HQL语句翻译成MapReduce...而MapReduce的执行速度是比较慢的,一种改进方案就是使用Spark来进行数据的查找和运算。...还有一种方式,可以称之为Spark on Hive:即使用Hive作为Spark的数据源,用Spark来读取HIVE的表数据(数据仍存储在HDFS上)。...因为Spark是一个更为通用的计算引擎,以后还会有更深度的使用(比如使用Spark streaming来进行实时运算),因此,我选用了Spark on Hive这种解决方案,将Hive仅作为管理结构化数据的工具...通过这里的配置,让Spark与Hive的元数据库建立起联系,Spark就可以获得Hive中有哪些库、表、分区、字段等信息。 配置Hive的元数据,可以参考 配置Hive使用MySql记录元数据。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/105853.html原文链接:https://javaforall.cn
一、说明: 在开发 Django 项目的时候,很多时候都是使用一个数据库,即 settings 中只有 default 数据库,但是有一些项目确实也需要使用多个数据库,这样的项目,在数据库配置和使用的时候...二、Django使用多个数据库中settings中的DATABASES的设置 2.1 默认只是用一个数据库时 DATABASES 的设置(以 SQLite 为例) DATABASES = {...'PASSWORD': 'Se7eN521', 'HOST': '127.0.0.1', 'PORT': '3306' } } 三、实现思路 多个应用对应多个数据库和一个应用对应多个数据库...情况一:项目有多个 应用app 且需要使用到多个数据库 情况二:项目只有一个应用app, 且但需要使用到多个数据库, 这两种情况的实现思路其实都是一样的,都是为每个数据库创建一个应用,即这个应用只对接一个数据库...第五步:总结 创建多个数据库连接设置 创建多个数据与应用app的映射关系 创建数据库路由 创建model类的时候置指明app_label,即这个model是属于那个app,从而觉得迁移到那个数据库
标签:Excel函数,FILTER函数 FILTER函数是一个动态数组函数,可以基于定义的条件筛选一系列数据,其语法为: FILTER(数组,包括, [是否为空]) 其中,参数数组,是想要筛选的数据,...我们可以使用FILTER函数返回满足多个条件的数据。 假设我们要获取两个条件都满足时的数据,如下图1所示示例数据,要返回白鹤公司销售香蕉的数据。...图1 可以使用公式: =FILTER(A2:D11,(A2:A11=G1)*(C2:C11=G2)) 公式中,两个条件相乘表示两者都要满足。结果如下图2所示。...图2 如果我们想要获取芒果和葡萄的所有数据,则使用公式: =FILTER(A2:D11,(C2:C11="芒果")+(C2:C11="葡萄")) 将两个条件相加,表示两者满足之一即可。...例如,想要获取白鹤公司芒果和葡萄的所有数据,则使用公式: =FILTER(A2:D11,((C2:C11="芒果")+(C2:C11="葡萄"))*(A2:A11="白鹤"))
尽可能快的读取到数据(通过获取之前缓存的网络数据)。 我将通过使用 RxJava,来实现这个计划。...concat()操作符持有多个Observable对象,并将它们按顺序串联成队列。 first()操作符只从串联队列中取出并发送第一个事件。...因此,如果使用concat().first(),无论多少个数据源,只有第一个事件会被检索出并发送。...使用哪个操作符,完全取决于是否需要明确处理缺失的数据。...如果需要一个真实示例,检出 Gfycat App,它在获取数据的时候使用了这种模式。项目并没有使用以上展示的所有功能(因为不需要),但是,示范了concat().first()的基本用法。
使用Spark访问Hive表,将读表数据导入到HBase中,写入HBase有两种方式:一种是通过HBase的API接口批量的将数据写入HBase,另一种是通过BulkLoad的方式生成HFile文件然后加载到...本篇文章Fayson主要介绍如何使用Spark读取Hive表数据通过BulkLoad的方式快速的将数据导入到HBase。...本篇文章主要使用HBase中hbase-spark包提供的HBaseContext来实现,需要准备hbase-spark的依赖包并部署到Spark集群。...保存配置,并重新部署Spark客户端配置 3.Hive表示例数据查看 ? 去除重复数据共600条数据 ?...通过Spark作业界面,查看作业运行情况 ? 2.作业执行成功后,查看HBase表数据 ? 查看表数据 ?
写数据到HBase (1) 使用saveAsNewAPIHadoopDataset() package com.bonc.rdpe.spark.hbase import com.alibaba.fastjson.JSON...{SparkConf, SparkContext} /** * Author: YangYunhe * Description: spark 通过内置算子写数据到 HBase:使用saveAsHadoopDataset...从HBase读数据 以下代码使用newAPIHadoopRDD()算子 package com.bonc.rdpe.spark.hbase import org.apache.hadoop.hbase...与使用HBase API相比,使用Bulkload导入数据占用更少的CPU和网络资源。 接下来介绍在spark中如何使用 Bulk Load 方式批量导入数据到 HBase 中。...参考文章: Spark读取Hbase中的数据 使用Spark读取HBase中的数据 在Spark上通过BulkLoad快速将海量数据导入到Hbase Spark doBulkLoad数据进入hbase
环境: hadoop 3.2.0 spark 3.0.3-bin-hadoop3.2 hudi 0.8.0 本文基于上述组件版本使用spark插入数据到hudi数据湖中。...:$HADOOP_HOME/share/hadoop/tools/*:$HADOOP_HOME/share/hadoop/yarn/*:$HADOOP_HOME/etc/hadoop/*Copy 本文使用的...使用spark-shell操作hudi数据湖 1 导入依赖包以及指定表名、hdfs路径、数据生成器 import org.apache.hudi.QuickstartUtils._ import scala.collection.JavaConversions...save(basePath) Copy 其中生成数据如下所示: 查看hdfs相关路径 3 查询数据 // spark-shell val tripsSnapshotDF = spark....save(basePath)Copy 其中第一行为生成更新数据,详细操作如下: 5 增量查询 // spark-shell // reload data spark. read.
后一部分包括数据帧、并行数组和扩展到流行接口(如pandas和NumPy)的列表。...Dask的数据帧非常适合用于缩放pandas工作流和启用时间序列的应用程序。此外,Dask阵列还为生物医学应用和机器学习算法提供多维数据分析。...该工具在具有1000多个核的弹性集群上运行!此外,您可以在处理数据的同时并行运行此代码,这将简化为更少的执行时间和等待时间! ? 该工具完全能够将复杂的计算计算调度、构建甚至优化为图形。...安全性:Dask支持加密,通过使用TLS/SSL认证进行身份验证。 优缺点 让我们权衡一下这方面的利弊。 使用Dask的优点: 它使用pandas提供并行计算。...使用Dask的缺点: 在Dask的情况下,与Spark不同,如果您希望在创建集群之前尝试该工具,您将无法找到独立模式。 它在Scala和R相比可扩展性不强。
AI应用最广泛的场景之一,本案例以音乐专辑发行数据为背景,讲解使用pyspark对HDFS存储的数据进行处理数据分析的过程,并且对分析结果做了可视化呈现。...data: _data } ] }; // 使用刚指定的配置项和数据显示图表...data: data } ] }; // 使用刚指定的配置项和数据显示图表...} }); } }); // 使用刚指定的配置项和数据显示图表...bar', xAxisIndex: 1, yAxisIndex: 1 , barWidth: 35} ] }; // 使用刚指定的配置项和数据显示图表
Pipelines是一个我认为使用不广泛,但是很有用的方法,他可以把很多步骤联系在一个项目里,使他能够简单的转换和更好的适应数据的整体结构,而不仅仅是一个步骤。...create a dataset that is missing some values, and then we'll look at how to create a Pipeline: 这是我们开始结合多项数据预处理步骤为一部的第一章节...,在scikit-learn中,它被称为一个Pipeline,在这一节,我们首先处理缺失值填充,然后我们放缩数据成均值为0,标准差为1的形式,让我们先生成一个含有缺失值的数据集,然后我们来学习如何创建一个...looked at a non-Pipeline example, let's look at how we can incorporate a Pipeline: 注意先前的缺失值是0,这里要求,使用均值来填充缺失值...Pipeline defines the steps that designate the progression of methods: 看一下这个Pipeline,如我们所见,Pipeline定义多个步骤包括设定执行的方法
我们这里使用的spark,优点来说是两个:一是灵活性高,二是代码简洁。...涉及的数据源有两个:Hive&MySQL;计算引擎:spark&spark-sql。...我们的demo中分为两个步骤: 1)从Hive中读取数据,交给spark计算,最终输出到MySQL; 2)从MySQL中读取数据,交给spark计算,最终再输出到MySQL另一张表。...spark-sql从hive中读取数据, 然后写入mysql对应表...DataFrame是spark-sql数据处理的核心。对DataFrame的操作推荐这样一篇博客。你可以去使用这些方法,实现复杂的逻辑。
它通过将计算任务分解为多个Map和Reduce阶段,并将这些任务分布到集群中的节点上进行并行计算,实现了高效的数据处理。...通过将数据存储在集群中的多个节点上,并进行并行计算,Hadoop能够实现高效的数据处理和分析。 适应多种数据类型:Hadoop不仅可以处理结构化数据,还可以处理半结构化和非结构化数据。...以下是Spark常用的数据结构: 弹性分布式数据集(Resilient Distributed Datasets,RDD):RDD是Spark最基本的抽象数据结构,它代表分布在集群中多个节点上的不可变数据集合...数据帧(DataFrame):DataFrame是一种类似于关系型数据库中表格的数据结构,它以列的形式组织数据,并且具有模式(schema)信息。...此外,Spark还通过支持并行计算和任务调度优化等方式提高了处理效率。 多项任务支持:Spark支持多种数据处理任务,包括批处理、交互式查询、流处理和机器学习等。
面试题05、Mapreduce和Spark的都是并行计算,那么他们有什么相同和区别? 总结 停不要往下滑了, 默默想5min, 看看这5道面试题你都会吗?...面试题05、Mapreduce和Spark的都是并行计算,那么他们有什么相同和区别?...3)Spark sql:Shark是SparkSQL的前身,Spark SQL的一个重要特点是其能够统一处理关系表和RDD,使得开发人员可以轻松地使用SQL命令进行外部查询, 同时进行更复杂的数据分析。...6)GraphX是Spark中用于图和图并行计算。huffle操作或者仅有较少shuffle操作的Spark作业,可以大大减少性能开销。 面试题04、Spark中Worker的主要工作是什么?...面试题05、Mapreduce和Spark的都是并行计算,那么他们有什么相同和区别?
领取专属 10元无门槛券
手把手带您无忧上云