首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    python-使用pygrib已有的GRIB1文件数据换为自己创建数据

    前言 希望修改grib变量,用作WRFWPS前处理初始场 python对grib文件处理packages python对于grib文件处理方式主要有以下两种库: 1、pygrib 2、xarray...数据写入新grib文件!有用!...: grb pygrib.index()读取数据后,不支持通过关键字读取指定多个变量 问题解决:滤波后数据替换原始grib数据再重新写为新grib文件 pygrib写grib文件优势在于...,写出grib文件,基本上会保留原始grib文件信息,基本Attributes等也不需要自己编辑,会直接原始文件信息写入 替换大致思路如下: replace_data = np.array...'.grib','wb') for i in range(len(sel_u_850)): print(i) sel_u_850[i].values = band_u[i] #原始文件纬向风数据换为滤波后数据

    89110

    python读取txt一列称为_python读取txt文件并取其某一列数据示例

    error) ‘unicodeescape’ codec 使用机器学习训练数据时,如果数据量较大可能我们不能够一次性数据加载进内存,这时我们需要将数据进行预处理,分批次加载进内存....下面是代码作用是数据数据库读取出来分批次写入txt文本文件,方便我们做数据预处理和训练机器学习模型. #%% import pymssql as MySQLdb #这里是python3 如果你是python2...a loop with signature matching types dtype(‘ 如何用python循环读取下面.txt文件,用红括号标出来数据呢?...先分段 按1000条数据量进行查询,处理成json数据 把处理后json数据 发送到目的collection上即可 实现: 一.使用http接口先进行查询 python读取.txt(.log)文件.....xml 文件 .excel文件数据,并将数据类型转换为需要类型,添加到list详解 1.读取文本文件数据(.txt结尾文件)或日志文件(.log结尾文件) 以下是文件内容,文件名为data.txt

    5.1K20

    使用python批量修改XML文件图像depth

    问题是这样,在制作voc数据集时,我采集是灰度图像,并已经用labelimg生成了每张图像对应XML文件。...批量修改了图像深度后,发现XMLdepth也要由1改成3才行。如果重新对图像标注一遍生成XML文件的话太麻烦,所以就想用python批量处理一下。...#判断是否是文件夹,不是文件夹才打开 print(xmlFile) #获取到xml文件名送入到dom解析 dom=xml.dom.minidom.parse...上面的代码思路是,读取XML文件,并修改depth节点内容修改为3,通过循环读取XML文件,实现批量化修改XML文件depth。 修改前后结果 XML修改前depth: ?...XML修改后depth: ? 这样,就可以使用自己制作voc数据集进行训练了。我选这个方法可能比较傻

    3.2K41

    Python】PySpark 数据输入 ① ( RDD 简介 | RDD 数据存储与计算 | Python 容器数据 RDD 对象 | 文件文件 RDD 对象 )

    : 大数据处理过程中使用计算方法 , 也都定义在了 RDD 对象 ; 计算结果 : 使用 RDD 计算方法对 RDD 数据进行计算处理 , 获得结果数据也是封装在 RDD 对象 ; PySpark...上一次计算结果 , 再次对新 RDD 对象数据进行处理 , 执行上述若干次计算 , 会 得到一个最终 RDD 对象 , 其中就是数据处理结果 , 将其保存到文件 , 或者写入到数据 ;...二、Python 容器数据 RDD 对象 1、RDD 转换 在 Python , 使用 PySpark 库 SparkContext # parallelize 方法 , 可以 Python...; # 创建一个包含列表数据 data = [1, 2, 3, 4, 5] 再后 , 并使用 parallelize() 方法将其转换为 RDD 对象 ; # 数据换为 RDD 对象 rdd =...RDD 对象 ---- 调用 SparkContext#textFile 方法 , 传入 文件 绝对路径 或 相对路径 , 可以 文本文件 数据 读取并转为 RDD 数据 ; 文本文件数据 :

    42810

    高质量编码--使用Pandas查询日期文件数据

    如下场景:数据按照日期保存为文件夹,文件数据又按照分钟保存为csv文件。...image.png image.png image.png 2019-07-28文件夹和2019-07-29文件分别如下: image.png image.png 代码如下,其中subDirTimeFormat...,fileTimeFormat,requestTimeFormat分别来指定文件夹解析格式,文件解析格式,以及查询参数日期解析格式: import os import pandas as pd onedayDelta...',12,"name",["value1","value2"]) print(result) 让我们查询2019-07-28 05:29到2019-07-29 17:29之间name为12数据...看一下调用结果: 通过比较检验,确认返回结果和csv文件数据是一致, name为12在各个csv数据如下: image.png image.png image.png image.png

    2K30

    更高效利用Jupyter+pandas进行数据分析,6种常用数据格式效率对比!

    使用Python进行数据分析时,Jupyter Notebook是一个非常强力工具,在数据集不是很大情况下,我们可以使用pandas轻松对txt或csv等纯文本格式数据进行读写。...size_mb:带有序列化数据文件大小 save_time:数据保存到磁盘所需时间 load_time:先前转储数据加载到内存所需时间 save_ram_delta_mb:在数据保存过程中最大内存消耗增长...五个随机生成具有百万个观测数据储到CSV,然后读回内存以获取平均指标。并且针对具有相同行数20个随机生成数据集测试了每种二进制格式。...同时使用两种方法进行对比: 1.生成分类变量保留为字符串 2.在执行任何I/O之前将其转换为pandas.Categorical数据类型 1.以字符串作为分类特征 下图显示了每种数据格式平均I/O...因为只要在磁盘上占用一点空间,就需要额外资源才能将数据解压缩回数据。即使文件在持久性存储磁盘上需要适度容量,也可能无法将其加载到内存。 最后我们看下不同格式文件大小比较。

    2.9K21

    更高效利用Jupyter+pandas进行数据分析,6种常用数据格式效率对比!

    使用Python进行数据分析时,Jupyter Notebook是一个非常强力工具,在数据集不是很大情况下,我们可以使用pandas轻松对txt或csv等纯文本格式数据进行读写。...size_mb:带有序列化数据文件大小 save_time:数据保存到磁盘所需时间 load_time:先前转储数据加载到内存所需时间 save_ram_delta_mb:在数据保存过程中最大内存消耗增长...五个随机生成具有百万个观测数据储到CSV,然后读回内存以获取平均指标。并且针对具有相同行数20个随机生成数据集测试了每种二进制格式。...同时使用两种方法进行对比: 1.生成分类变量保留为字符串 2.在执行任何I/O之前将其转换为pandas.Categorical数据类型 1.以字符串作为分类特征 下图显示了每种数据格式平均I/O...因为只要在磁盘上占用一点空间,就需要额外资源才能将数据解压缩回数据。即使文件在持久性存储磁盘上需要适度容量,也可能无法将其加载到内存。 最后我们看下不同格式文件大小比较。

    2.4K30

    Python操控Excel:使用Python在主文件添加其他工作簿数据

    标签:Python与Excel,合并工作簿 本文介绍使用Python向Excel主文件添加新数据最佳方法。该方法可以保存主数据格式和文件所有内容。...安装库 本文使用xlwings库,一个操控Excel文件最好Python库。...图3 接下来,要解决如何数据放置在想要位置。 这里,要将新数据放置在紧邻工作表最后一行下一行,例如上图2第5行。那么,我们在Excel是如何找到最后一个数据呢?...图4 打开并读取新数据文件 打开新数据文件,从中获取所有非空行和列数据使用.expand()方法扩展单元格区域选择。注意,从单元格A2开始扩展,因为第1列为标题行。...图6 数据转到主文件 下面的代码数据工作簿数据转移到主文件工作簿: 图7 上述代码运行后,主文件如下图8所示。 图8 可以看到,添加了新数据,但格式不一致。

    7.9K20

    spring boot 使用ConfigurationProperties注解配置文件属性绑定到一个 Java 类

    @ConfigurationProperties 是一个spring boot注解,用于配置文件属性绑定到一个 Java 类。...功能介绍:属性绑定:@ConfigurationProperties 可以配置文件属性绑定到一个 Java 类属性上。...通过在类上添加该注解,可以指定要绑定属性前缀或名称,并自动配置文件对应属性赋值给类属性。...类型安全:通过属性绑定,@ConfigurationProperties 提供了类型安全方式来读取配置文件属性。它允许属性直接绑定到正确数据类型,而不需要手动进行类型转换。...当配置文件属性被绑定到类属性上后,可以通过依赖注入等方式在应用程序其他组件中直接使用这些属性。属性验证:@ConfigurationProperties 支持属性验证。

    58020

    numpy和pandas库实战——批量得到文件夹下多个CSV文件第一列数据并求其最

    /前言/ 前几天群里有个小伙伴问了一个问题,关于Python读取文件夹下多个CSV文件第一列数据并求其最大和最小,大家讨论甚为激烈,在此总结了两个方法,希望后面有遇到该问题小伙伴可以少走弯路...通常我们通过Python来处理数据,用比较多两个库就是numpy和pandas,在本篇文章分别利用两个库来进行操作。...3、其中使用pandas库来实现读取文件夹下多个CSV文件第一列数据并求其最大和最小代码如下图所示。 ? 4、通过pandas库求取结果如下图所示。 ?...通过该方法,便可以快速取到文件夹下所有文件第一列最大和最小。 5、下面使用numpy库来实现读取文件夹下多个CSV文件第一列数据并求其最大和最小代码如下图所示。 ?.../小结/ 本文基于Python使用numpy库和pandas库实现了读取文件夹下多个CSV文件,并求取文件第一列数据最大和最小,当然除了这两种方法之外,肯定还有其他方法也可以做得到,欢迎大家积极探讨

    9.5K20

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护

    简化数据换为 DataFrame 对象过程,而这些数据基本是 Python 和 NumPy 数据结构不规则、不同索引数据; 基于标签智能切片、索引以及面向大型数据子设定; 更加直观地合并以及连接数据集...; 更加灵活地重塑、置(pivot)数据集; 轴分级标记 (可能包含多个标记); 具有鲁棒性 IO 工具,用于从平面文件 (CSV 和 delimited)、 Excel 文件数据库中加在数据,...用于一个 Series 每个换为另一个,该可能来自一个函数、也可能来自于一个 dict 或 Series。...Isin () 有助于选择特定列具有特定(或多个)行。...当一个数据分配给另一个数据时,如果对其中一个数据进行更改,另一个数据发生更改。为了防止这类问题,可以使用 copy () 函数。

    6.7K20

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护航

    简化数据换为 DataFrame 对象过程,而这些数据基本是 Python 和 NumPy 数据结构不规则、不同索引数据; 基于标签智能切片、索引以及面向大型数据子设定; 更加直观地合并以及连接数据集...; 更加灵活地重塑、置(pivot)数据集; 轴分级标记 (可能包含多个标记); 具有鲁棒性 IO 工具,用于从平面文件 (CSV 和 delimited)、 Excel 文件数据库中加在数据,...用于一个 Series 每个换为另一个,该可能来自一个函数、也可能来自于一个 dict 或 Series。...Isin () 有助于选择特定列具有特定(或多个)行。...当一个数据分配给另一个数据时,如果对其中一个数据进行更改,另一个数据发生更改。为了防止这类问题,可以使用 copy () 函数。

    7.5K30

    【Groovy】Xml 反序列化 ( 使用 XmlParser 解析 Xml 文件 | 删除 Xml 文件节点 | 增加 Xml 文件节点 | 修改后 Xml 数据输出到文件 )

    文章目录 一、删除 Xml 文件节点 二、增加 Xml 文件节点 三、修改后 Xml 数据输出到文件 四、完整代码示例 一、删除 Xml 文件节点 ---- 在 【Groovy】Xml...反序列化 ( 使用 XmlParser 解析 Xml 文件 | 获取 Xml 文件节点和属性 | 获取 Xml 文件节点属性 ) 博客基础上 , 删除 Xml 文件节点信息 ; 下面是要解析...---- 增加 Xml 文件节点 , 调用 appendNode 方法 , 可以向节点插入一个子节点 ; // 添加节点 xmlParser.appendNode("height", "175cm...") 三、修改后 Xml 数据输出到文件 ---- 创建 XmlNodePrinter 对象 , 并调用该对象 print 方法 , 传入 XmlParser 对象 , 可以将该 XmlParser...数据信息写出到文件 ; // 修改后 Xml 节点输出到目录 new XmlNodePrinter(new PrintWriter(new File("b.xml"))).print(xmlParser

    6.2K40

    NumPy、Pandas若干高效函数!

    Pandas数据统计包6种高效函数 Pandas 也是一个 Python 包,它提供了快速、灵活以及具有显著表达能力数据结构,旨在使处理结构化 (表格化、多维、异构) 和时间序列数据变得既简单又直观...、置(pivot)数据集; 轴分级标记 (可能包含多个标记); 具有鲁棒性IO工具,用于从平面文件 (CSV 和 delimited)、Excel文件数据库中加在数据,以及从HDF5格式中保存...用于一个Series每个换为另一个,该可能来自一个函数、也可能来自于一个dict或Series。...Isin()有助于选择特定列具有特定(或多个)行。...当一个数据分配给另一个数据时,如果对其中一个数据进行更改,另一个数据发生更改。为了防止这类问题,可以使用copy ()函数。

    6.6K20

    12 种高效 Numpy 和 Pandas 函数为你加速分析

    简化数据换为 DataFrame 对象过程,而这些数据基本是 Python 和 NumPy 数据结构不规则、不同索引数据; 基于标签智能切片、索引以及面向大型数据子设定; 更加直观地合并以及连接数据集...; 更加灵活地重塑、置(pivot)数据集; 轴分级标记 (可能包含多个标记); 具有鲁棒性 IO 工具,用于从平面文件 (CSV 和 delimited)、 Excel 文件数据库中加在数据,...用于一个 Series 每个换为另一个,该可能来自一个函数、也可能来自于一个 dict 或 Series。...Isin () 有助于选择特定列具有特定(或多个)行。...当一个数据分配给另一个数据时,如果对其中一个数据进行更改,另一个数据发生更改。为了防止这类问题,可以使用 copy () 函数。

    6.3K10
    领券