在计算机编程中,pandas是Python编程语言的用于数据操纵和分析的软件库。特别是,它提供操纵数值表格和时间序列的数据结构和运算操作。...它的名字衍生自术语“面板数据”(panel data),这是计量经济学的数据集术语,它们包括了对同一个体的在多个时期上的观测。...及DataFrame的使用方式 三、数据排序与查询 1、排序 例1:按语文分数排序降序,数学升序,英语降序 例2:按索引进行排序 2、查询 单条件查询 多条件查询 使用数据区间范围进行查询...# 值排序 pd.merge(data1,data2) # 合并,以下为左连接 pd.merge(data1,data2,on=[a],how='left') pd.concat...) # 将空值填充下一个值,限制填充数量为1 三、数据排序与查询 1、排序 例1:按语文分数排序降序,数学升序,英语降序 import pandas as pd path = 'c:/pandas
观察上图可知,result是一个4行5列的表格数据,且保留了key列并集部分的数据,由于A、B两列只有3行数据,C、D两列有4行数据,合并后A、B两列没有数据的位置填充为NaN。...result = pd.merge(df_left, df_right, on='key') result 输出为: 左外连接的方式合并数据 # 以key为主键,采用左外连接的方式合并数据...’inner’或’outer’(默认值),其中’inner’表示内连接,即合并结果为多个对象重叠部分的索引及数据,没有数据的位置填充为NaN;'outer’表示外连接,即合并结果为多个对象各自的索引及数据...列合并: 观察上图可知,result对象由left与right左右拼接而成,由于left没有3这个行索引,所以这行相应的位置上填充了NaN。...重叠合并数据是一种并不常见的操作,它主要将一组数据的空值填充为另一组数据中对应位置的值。pandas中可使用combine_first()方法实现重叠合并数据的操作。
当许多人开始踏足数据分析领域时,他们常常会对选择何种工具感到迷茫。在这个充满各种选项的时代,为什么会有这么多人选择 Pandas 作为他们的数据分析工具呢?这个问题似乎简单,但背后涉及了许多关键因素。...在探究这个问题之前,让我们先理解一下 Pandas 的背景和特点。优化的数据结构:Pandas提供了几种高效的数据结构,如DataFrame和Series,它们是为了优化数值计算和数据操作而设计的。...定义了填充空值的方法, pad / ffill表示用前面行/列的值,填充当前行/列的空值; backfill / bfill表示用后面行/列的值,填充当前行/列的空值。axis:轴。...DataFrame或Series,一左一右how:两个数据连接方式,默认为inner,可设置inner、outer、left或righton:作为连接键的字段,左右数据中都必须存在,否则需要用left_on...和right_on来指定left_on:左表的连接键字段right_on:右表的连接键字段left_index:为True时将左表的索引作为连接键,默认为Falseright_index:为True时将右表的索引作为连接键
pandas 数据清洗 1. 去除 NaN 值 在Pandas的各类数据Series和DataFrame里字段值为NaN的为缺失数据,不代表0而是说没有赋值数据,类似于python中的None值。...复杂的 使用向前 或 向后 填充数据,依旧使用fillna 方法,所谓向前 是指 取出现NaN值的前一列或前一行的数据来填充NaN值,向后同理 # 在df 的e 这一列上操作,默认下按行操作,向前填充数据...,会从最近的那个非NaN值开始将之后的位置全部填充,填充的数值为列上保留数据的最大值最小值之间的浮点数值。...指定拼接的轴,默认是列方向的拼接数据,可以指定concat 的形参axis为行上的拼接数据。...外连接,分左外连接,右外连接,全连接,左外连接是左表上的所有行匹配右表,正常能匹配上的取B表的值,不能的取空值,右外连接同理,全连接则是取左并上右表的的所有行,没能匹配上的用空值填充。
在Python的Pandas库中,可以使用pd.concat()函数实现纵向合并:import pandas as pddf1 = pd.DataFrame({'A': [1, 2], 'B': [3,...换言之,只显示两个表中都有对应记录的行。左连接(Left Join):保留左表的所有行,即使右表中没有匹配的行。对于左表中没有对应匹配的行,右表的部分将会填充为NULL(通常用NaN表示)。...右连接(Right Join):与左连接相反,保留右表的所有行。对于右表中没有对应匹配的行,左表的部分将会填充为NULL。全外连接(Full Outer Join):保留两个表中的所有行。...对于任意一个表中没有对应匹配的行,另一个表的部分将会填充为NULL。...例如,以下代码展示了不同类型的合并方式:# 内连接result_inner = pd.merge(df1, df2, on='ID', how='inner')# 左连接result_left = pd.merge
2.2.1.1 how参数可以取下列值 left:使用左侧的 DataFrame的键,类似SQL的左外连接 right:使用右侧的 DataFrame的键,类似SQL的右外连接 outer:使用两个...sort:根据连接键对合并的数据进行排序,默认为 False. 2.4 合并重叠数据 当DataFrame对象中出现了缺失数据,而我们希望使用其他 DataFrame对象中的数据填充缺失数据,则可以通过...数据重塑 3.1 重塑层次化索引 Pandas中重塑层次化索引的操作主要是 stack()方法和 unstack()方法,前者是将数据的列“旋转”为行,后者是将数据的行“旋转”为列。 ...3.2 轴向旋转 在 Pandas中pivot()方法提供了这样的功能,它会根据给定的行或列索引重新组织一个 DataFrame对象。 ...数据转换 4.1 重命名轴索引 Pandas中提供了一个rename()方法来重命名个别列索引或行索引的标签或名称。
Pandas 常用的导入格式:import pandas as pd ---- 一、数据载入 1.文本文件读取 文本文件是一种由若干行字符构成的计算机文件,它是一种典型的顺序文件。...Pandas提供了read_excel函数读取“xls”和“xlsx”两种excel文件,其格式为: pandas.read_excel(io, sheetname, header=0, index_col...二、合并数据 在实际的数据分析中,对同一分析对象,可能有不同的数据来源,因此,需要对数据进行合并处理。...pandas中的concat方法可以实现,默认情况下会按行的方向堆叠数据。如果在列向上连接设置axies = 1即可。...在处理数据的过程中,当一个DataFrame对象中出现了缺失数据,而对于这些缺失数据,我们希望可以使用其他DataFrame对象中的数据填充,此时需要使用combine_first方法。
屏幕快照 2018-07-02 21.47.59.png 2.字段合并 将同一个数据框中的不同列合并成新的列。 方法x = x1 + x2 + x3 + ...合并后的数据以序列的形式返回。...屏幕快照 2018-07-02 22.04.25.png 3.1 默认只保留连接上的部分 第10行已经消失 itemPrices = pandas.merge( items, prices...屏幕快照 2018-07-02 22.02.37.png 3.2 使用左连接 即使与右边数据框匹配不上,也要保留左边内容,右边未匹配数据用空值代替 itemPrices = pandas.merge(...屏幕快照 2018-07-02 21.38.15.png 3.3 使用右连接 即使与左边数据框匹配不上,也要保留右边内容,左边未匹配数据用空值代替 itemPrices = pandas.merge(...屏幕快照 2018-07-02 21.38.49.png 3.4 保留左右表所有数据行 即使连接不上,也保留所有未连接的部分,使用空值填充 itemPrices = pandas.merge(
所以,在日常的数据处理中,经常需要将两张表拼接起来使用,这样的操作对应到SQL中是join,在Pandas中则是用merge来实现。这篇文章就讲一下merge的主要原理。...首先我们有以下的数据,左侧和右侧的数据分别代表了用户的基础信息和消费信息,连接两张表的键是userid。 ?...相信整个过程并不难理解,上面演示的是同一个键下,两个表对应只有一条数据的情况(一个用户对应一条消费记录),那么,如果一个用户对应了多条消费记录的话,那又是怎么拼接的呢?...'right' merge时,以右边表格的键为基准进行配对,如果右边表格中的键在左边不存在,则用缺失值NaN填充。 什么意思呢?用一个例子来具体解释一下,这是演示的数据 ?...②将两张表的数据列拼起来,对于没有匹配到的地方,使用缺失值NaN进行填充 ?
#pandas.DataFrame.combine_first 2. update方法 (1)三个特点 ①返回的框索引只会与被调用框的一致(默认使用左连接,下一节会介绍) ②第二个框中的nan元素不会起作用...默认使用inner连接,因为merge只能横向拼接,所以取行向上keys的交集,下面看如果使用how=outer参数。...使用了how='outer',那么如果行中带有缺失值也会被返回。 左连接: pd.merge(left, right, how='left', on=['key1', 'key2']) ?...highlight=merge#pandas.DataFrame.merge 2. join函数 join函数作用是将多个pandas对象横向拼接,遇到重复的索引项时会使用笛卡尔积,默认左连接,可选inner...答:就是我们用merge的时候,他会自动计算笛卡尔积,但是最后返回的是不是全部的笛卡尔积,就要看这些连接方式了,有时候是左连接,那就会根据左表的索引来返回,有时候右连接,就会根据右表索引来返回,有时候也会全部返回
本文的重点是在合并和连接操作方面比较Pandas和SQL。Pandas是一个用于Python的数据分析和操作库。SQL是一种用于管理关系数据库中的数据的编程语言。...两者都使用带标签的行和列的表格数据。 Pandas的merge函数根据公共列中的值组合dataframe。SQL中的join可以执行相同的操作。...这些操作非常有用,特别是当我们在表的不同数据中具有共同的数据列(即数据点)时。 ? pandas的merge图解 我创建了两个简单的dataframe和表,通过示例来说明合并和连接。 ?...因此,purc中的列中填充了这些行的空值。 示例3 如果我们想要看到两个dataframe或表中的所有行,该怎么办?...MySQL没有提供“完整的外连接”,但是我们可以通过两个左连接来实现。 注意:尽管关系数据库管理系统(rdbms)采用的SQL语法基本相同,但可能会有一些细微的差异。
操作数据帧可能很快会成为一项复杂的任务,因此在Pandas中的八种技术中均提供了说明,可视化,代码和技巧来记住如何做。 ?...Pandas提供了各种各样的DataFrame操作,但是其中许多操作很复杂,而且似乎不太平易近人。本文介绍了8种基本的DataFrame操作方法,它们涵盖了数据科学家需要知道的几乎所有操作功能。...另一方面,如果一个键在同一DataFrame中列出两次,则在合并表中将列出同一键的每个值组合。...Concat 合并和连接是水平工作,串联或简称为concat,而DataFrame是按行(垂直)连接的。...尽管可以通过将axis参数设置为1来使用concat进行列式联接,但是使用联接 会更容易。 请注意,concat是pandas函数,而不是DataFrame之一。
图片Pandas的功能与函数极其丰富,要完全记住和掌握是不现实的(也没有必要),资深数据分析师和数据科学家最常使用的大概有二三十个函数。在本篇内容中,ShowMeAI 把这些功能函数总结为10类。...图解数据分析:从入门到精通系列教程数据科学工具库速查表 | Pandas 速查表 1.读取数据我们经常要从外部源读取数据,基于不同的源数据格式,我们可以使用对应的 read_*功能:read_csv:我们读取...这个函数的使用注意点包括 header(是否有表头以及哪一行是表头), sep(分隔符),和 usecols(要使用的列/字段的子集)。read_excel:读取Excel格式文件时使用它。...fillna: 用指定的方法填充缺失值,例如向前填充 ( ffill)。...重要的参数包括 on(连接字段),how(例如内连接或左连接,或外连接),以及 suffixes(相同字段合并后的后缀)。concat:沿行或列拼接DataFrame对象。
Python Pandas 中级教程:数据合并与连接 Pandas 是一款强大的数据处理库,提供了丰富的功能来处理和分析数据。在实际数据分析中,我们常常需要将不同数据源的信息整合在一起。...本篇博客将深入介绍 Pandas 中的数据合并与连接技术,帮助你更好地处理多个数据集的情况。 1. 安装 Pandas 确保你已经安装了 Pandas。...数据合并 4.1 使用 merge 函数 merge 函数是 Pandas 中用于合并数据的强大工具,它类似于 SQL 中的 JOIN 操作。...# 按行连接 concatenated_df = pd.concat([df1, df2], axis=0) 5.2 指定连接轴 可以通过 axis 参数指定连接轴,0 表示按行连接,1 表示按列连接。...处理缺失值 合并数据时,可能会遇到某些行在一个数据集中存在而在另一个数据集中不存在的情况,导致合并后的结果中存在缺失值。可以使用 fillna 方法填充缺失值。
2.数据关联合并 ? 为了使每行都出现相应order的总金额,需要使用“左关联”。我们使用源数据在左,聚合后的总金额数据在右(反过来也可)。不指定连接key,则会自动查找相应的关联字段。...多列分组使用transform 为演示效果,我们虚构了如下数据,id,name,cls为维度列。 ? 我们想求:以(id,name,cls)为分组,每组stu的数量占各组总stu的比例。...2.与groupby一起使用 此时,transform函数返回与原数据一样数量的行,并将函数的结果分配回原始的dataframe。也就是说返回的shape是(len(df),1)。...在上面的示例数据中,按照name可以分为三组,每组都有缺失值。用平均值填充是一种处理缺失值常见的方式。此处我们可以使用transform对每一组按照组内的平均值填充缺失值。 ?...小结: transform函数经常与groupby一起使用,并将返回的数据重新分配到每个组去。利用这一点可以方便求占比和填充缺失值。但需要注意,相比于apply,它的局限在于只能处理单列的数据。
缺失值的常见处理方式有三种:删除缺失值、填充缺失值和插补缺失值,pandas中为每种处理方式均提供了相应的方法。...2.1.2 删除缺失值 pandas中提供了删除缺失值的方法dropna(),dropna()方法用于删除缺失值所在的一行或一列数据,并返回一个删除缺失值后的新对象。...2.1.3填充缺失值 pandas中提供了填充缺失值的方法fillna(),fillna()方法既可以使用指定的数据填充,也可以使用缺失值前面或后面的数据填充。...how参数的取值‘inner’代表基于left与right的共有的键合并,类似于数据库的内连接操作;'left’代表基于left的键合并,类似于数据库的左外连接操作;'right’代表基于right的键合并...’inner’或’outer’(默认值),其中’inner’表示内连接,即合并结果为多个对象重叠部分的索引及数据,没有数据的位置填充为NaN;'outer’表示外连接,即合并结果为多个对象各自的索引及数据
Python之数据规整化:清理、转换、合并、重塑 1. 合并数据集 pandas.merge可根据一个或者多个不同DataFrame中的行连接起来。...pandas.concat可以沿着一条轴将多个对象堆叠到一起。 实例方法combine_first可以将重复数据编接在一起,用一个对象中的值填充另一个对象中的缺失值。 2....外连接求取的是键的并集,组合了左连接和右连接。 2.3 都对的的连接是行的笛卡尔积。 2.4 merge的suffixes选项,用于指定附加到左右两个DataFrame对象的重叠列名上的字符串。...4.1 重塑层次化索引 层次化索引为DataFrame数据的重排任务提供了良好的一致性方式。主要两种功能: stack:将数据的列“旋转”为行。...unstack:将数据的行“旋转”为列。 5. 数据转换 5.1 利用函数或映射进行数据转换 Series的map方法可以接受一个函数或含有映射关系的字典型对象。
以上可以看到,上采样的过程中由于频率更高导致采样后数据部分缺失。这时候可以使用上采样的填充方法,方法如下: 1)ffill 只有一个参数limit控制向前填充的数量。...下面将天为频率的数据上采样到8H频率,向前填充1行和2行的结果。...df.resample('8H')['C_0'].ffill(limit=1) 2)bfill 与向前填充用法一样,下面向后填充1行和2行的结果。...以下对缺失部分按最近数据填充1行,结果如下。...transform()函数的使用方法可参考pandas transform 数据转换的 4 个常用技巧! 以下对C_0变量进行采样分组内的累加和排序操作。
在日常工作中,我们可能会从多个数据集中获取数据,并且希望合并两个或多个不同的数据集。这时就可以使用Pandas包中的Merge函数。...我们可以把外连接看作是同时进行的左连接和右连接。 最后就是交叉连接,将合并两个DataFrame之间的每个数据行。 让我们用下面的代码尝试交叉连接。...由于是外连接,一些数据点是空的。对于merge_ordered,有一个选项可以通过使用fill_method参数来填充缺失的值。...,并且用于对数据进行分组的同一DataFrame中不存在的数据用NaN填充。...比如在第三行和第四行,order_date值为“2014-07-07”,但delivery_date为“2014-07-06”。 使用merge_asof会丢失数据。
利用Python进行数据分析(8) pandas基础: Series和DataFrame的基本操作 一、reindex() 方法:重新索引 针对 Series 的重新索引操作 重新索引指的是根据index...如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行。不想用缺失值,可以用 fill_value 参数指定填充值。 ?...fill_value 会让所有的缺失值都填充为同一个值,如果不想这样而是用相邻的元素(左或者右)的值填充,则可以用 method 参数,可选的参数值为 ffill 和 bfill,分别为用前值填充和用后值填充...针对 DataFrame 的重新索引操作 ? 二、drop() 方法:丢弃数据 针对 Series ? 针对 DataFrame 不仅可以删除行,还可以删除列: ?...和Series 对象一样,不重叠的索引会取并集,值为 NA;如果不想这样,试试使用 add() 方法进行数据填充: ? 五、函数应用和映射 将一个 lambda 表达式应用到每列数据里: ?
领取专属 10元无门槛券
手把手带您无忧上云