标签:Python与Excel,pandas 我们之前讨论了如何在pandas中创建计算列,并讲解了一些简单的示例。...通过将表达式赋值给一个新列(例如df['new column']=expression),可以在大多数情况下轻松创建计算列。然而,有时我们需要创建相当复杂的计算列,这就是本文要讲解的内容。...那么,在列中对每个学生进行循环?不!记住,我们永远不应该循环遍历pandas数据框架/系列,因为如果我们有一个大的数据集,这样做效率很低。...pandas applymap()方法 pandas提供了一种将自定义函数应用于列或整个数据框架的简单方法,就是.applymap()方法,这有点类似于map()函数的作用。...图3 我们仍然可以使用map()函数来转换分数等级,但是,需要在三列中的每一列上分别使用map(),而applymap()能够覆盖整个数据框架(多列)。
小勤:在Power BI里怎么增加一列? 大海:在Power BI里增加列有2种方法,一种是咱们在学Power Query里的“添加列”方法,还有一种是在PowerPivot里的新建“计算列”方法。...具体操作方法如下: 在查询编辑中添加列: 直接在Power BI Desktop界面中新建列: 小勤:啊。Power BI真是两这个的完全组合啊。这两者之间有什么不同吗?...而在Power BI Desktop里用新建(计算)的方式,使用的是Power Pivot中的相关方法,总体看来相对弱一些。...但是,新建计算列的方法有个好处,是可以直接引用计算度量的相关结果,这一点是用PQ添加列方法做不到的。 小勤:那该怎么决定到底用哪一种方法呢? 大海:我很少纠结这个问题,反正觉得哪个用起来方便就用哪个。...总的来说,我一般是除非要引用某些计算度量的结果或者是一些非常简单的计算列,绝大部分的时候我都是用PQ进行处理的。 小勤:嗯。我大概知道了。
inplace : bool, default False 如果为True,则就地修改返回None 如果为False,则返回修改后的Series how : str, optional 不使用...1或‘columns’:删除包含缺失值的列。...how : {‘any’, ‘all’}, default ‘any’ 当我们有至少一个NA或全部NA时,确定是否从DataFrame中删除行或列。...‘any’:如果存在任何NA值,则删除该行或列。 ‘all’:如果所有值均为NA,则删除该行或列。...删除所有元素均为缺失值的行 保留至少含有两个非缺失值的行 定义在哪些列中寻找缺失值 版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 这个系列讲讲Python的科学计算版块...今天讲讲pandas模块: 不同列相减获取新的一列 Part 1:示例 已知一个DataFrame,有4列["quality_1", "measure_value", "up_tol", "down_tol..."] 希望生成两个新的列 列up_measure中每个值=列up_tol-列measure_value 列measure_down中每个值=列measure_value-列down_tol 回想一下,传统方式如何实现这样的效果...Part 2:代码 import pandas as pd dict_1 = {"quality_1": ["pos_1", "pos_2", "pos_3", "pos_4", "pos_5"],...Part 3:部分代码解读 df["up_measure"] = df["up_tol"] - df["measure_value"],两列相减,生成一个新的列
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 这个系列讲讲Python的科学计算版块...今天讲讲pandas模块: DataFrame不同列相乘 Part 1:示例 已知一个DataFrame,有4列["quality_1", "measure_value", "up_tol", "down_tol...,采用的算法如下图 希望生成3个新辅助计算列(前面2列上一篇文章已经介绍过) 列up_measure中每个值=列up_tol-列measure_value 列measure_down中每个值=列measure_value..."] < 0],对df进行筛选,筛选条件为: mul列数值小于0 unqualified_num = df_2["mul"].count()获取mul列数目,也可以使用unqualified_num =...传送门 Python-科学计算-pandas-02-两列相减 Python-科学计算-pandas-01-df获取部分数据 本文为原创作品,欢迎分享
系统:Windows 10 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 pandas:1.1.5 这个系列讲讲Python的科学计算及可视化...今天讲讲pandas模块 将df按某列进行排序 Part 1:场景描述 已知df1,包括6列,"time", "pos", "value1", "value2", "value3", "value4...其中value4为周次信息,想获取最新周次value1的取值 如下图,最新的周次应该为21KW36,其对应value1的取值为50 df Part 2:逻辑 将df按照value4列进行排序...取第1行value1的取值即为所求 Part 3:代码 import pandas as pd dict_1 = {"time": ["2019-11-02", "2019-11-03", "2019...,即value1列的取值。
系统:Windows 10 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 pandas:1.1.5 这个系列讲讲Python的科学计算及可视化...今天讲讲pandas模块 将df按某列进行去重 Part 1:场景描述 已知df1,包括6列,"time", "pos", "value1", "value2", "value3", "value4...有两个需求: 根据pos列,去除重复记录; 根据pos和value1列,去除重复记录,即要求这两列都相等时去重 df_1 Part 2:根据pos列去重 import pandas as pd dict...import pandas as pd dict_1 = {"time": ["2019-11-02", "2019-11-03", "2019-11-04", "2019-11-05",...若列表元素大于1个,要求同时满足多列对应记录相同才能去重。
准备用于演示的数据框架 pandas库提供了一种从网页读取数据的便捷方式,因此我们将从百度百科——世界500强公司名单——加载一个表格。 图1 看起来总共有6列。下面单独列出了这个表的列。...我们可以使用这种方法重命名索引(行)或列,我们需要告诉pandas我们正在更改什么(即列或行),这样就不会产生混淆。还需要在更改前后告诉pandas列名,这提高了可读性。...我选择不覆盖原始数据框架(即默认情况下inplace=False),因为我希望保留原始数据框架以供其他演示使用。注意,我们只需要传入计划更改名称的列。...图8 通过将上述列名重新赋值给一个新的类似列表的对象,我们可以轻松更改这些列名: 图9 注意,此方法与set_axis()方法类似,因为我们需要为要保留的每一列传入名称。 何时使用何方法?....rename()方法要求我们只传递需要更改的列 .set_axis()和df.columns要求我们传递所有列名 换句话说,使用: .rename()当只需要更改几列时。
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算及可视化 今天讲讲pandas模块 修改Df列名,删除某列,以及将nan值替换为字符串yes Part 1:目标 ?...import numpy as np import pandas as pd dict_1 = {"time": ["2019-11-02", "2019-11-03", "2019-11-04",...=True表示对原df进行操作,保留操作后的结果,与第1点的情况不同 df_2.fillna("yes", inplace=True) 将nan值用字符串yes进行替换 定义nan值使用np.nan方法...实际情况中,当df某行某列没有赋值,会出现nan值情况,对于nan值有些情况需要处理,例如使用Django进行网站搭建,后端向前端反馈数据时,不能包括nan值
本次我们将介绍四种新增数据列的方法:直接赋值、df.apply方法、df.assign方法以及按条件筛选后赋值。 本文框架 0. 导入Pandas 1. 读取数据与数据预处理 2....导入Pandas import pandas as pd 1. 读取数据与数据预处理 # 读取数据 data = pd.read_csv("....直接赋值 我们可以通过"df["新列名"] = ……"方式添加新列。...# 计算温差 data["Temperature_difference"] = data["bWendu"] - data["yWendu"] # 查看添加新列后的数据 data.head() # 返回结果...在此我们为数据添加"Temperature_type"列,设置最高温度大于30为热,最低气温低于-10为冷,其余为正常。
前言 数据清洗很重要,本文演示如何使用 Python Pandas 来查找和丢弃 DataFrame 中列值唯一的列,简言之,就是某列的数值除空值外,全都是一样的,比如:全0,全1,或者全部都是一样的字符串如...:已支付,已支付,已支付… 这些列大多形同虚设,所以当数据集列很多而导致人眼难以查找时,这个方法尤为好用。...上代码前先上个坑吧,数据列中的空值 NaN 也会被 Pandas 认为是一种 “ 值 ”,如下图: 所以只要把列的缺失值先丢弃,再统计该列的唯一值的个数即可。...代码实现 数据读入 检测列值唯一的所有列并丢弃 最后总结一下,Pandas 在数据清洗方面有非常多实用的操作,很多时候我们想不到只是因为没有接触过类似的案例或者不知道怎么转换语言描述,比如 “...列值唯一 ” --> “ 除了空值以外的唯一值的个数等于1 ” ,许多坑笔者都已经踩过了,欢迎查看我的其余文章,提建议,共同进步。
前言我们上篇文章简单的介绍了如何获取行和列的数据,今天我们一起来看看两个如何结合起来用。获取指定行和指定列的数据我们依然使用之前的数据。...我们先看看如何通过切片的方法获取指定列的所有行的数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行的位置我们使用类似python中的切片语法。...我们试试看如何将最后一列也包含进来。info = df.iloc[:, [1, 4, -1]]可以看到也获取到了,但是值得注意的是,如果我们使用了-1,那么就不能用loc而是要用iloc。...同样我们可以利用切片方法获取类似前4列这样的数据df.iloc[:, :4]由于我们没有指定行名称,所有指标这一列也计算在内了。...如果要使用索引的方式,要使用下面这段代码df.iloc[2, 2]是不是很简单,接下来我们再看看如何获取多行多列。为了更好的的演示,咱们这次指定索引列df = pd.read_excel("..
标签:pandas,Python 有时候,我们需要在pandas数据框架内移动一列,shift()方法提供了一种方便的方法来实现。...在pandas数据框架中向上/向下移动列 要向下移动列,将periods设置为正数。要向上移动列,将其设置为负数。 注意,只有数据发生了移位,而索引保持不变。...目前,如果想使用freq参数,索引必须是datetime类型的数据,否则pandas将引发NotImplementedError。 向左或向右移动列 可以使用axis参数来控制移动的方向。...如果不需要NaN值,还可以使用fill_value参数填充空行/空列。...Pandas.Series shift()方法 如前所述,Series类还有一个类似的shift()方法,其工作方式完全相同,只是它对一个系列(即单个列)而不是整个数据框架进行操作。
小小明:「凹凸数据」专栏作者,Pandas数据处理高手,致力于帮助无数数据从业者解决数据处理难题。 刚才碰到一个非常简单的需求: ? 但是我发现大部分人在做这个题的时候,代码写的异常复杂。...首先读取数据: import pandas as pd df = pd.read_excel("练习.xlsx", index_col=0) df 结果: ?...为了后续处理方便,我将不需要参与分组的第一列事先设置为索引。 groupby分组相信大部分读者都使用过,但一直都是按行分组,不过groupby不仅可以按行分组,还可以按列进行分组。...可以看到,非常简单,仅8行以内的代码已经解决这个问题,剩下的只需在保存到excel时设置一下单元格格式即可,具体设置方法可以参考:Pandas指定样式保存excel数据的N种姿势 简单讲解一下吧: df.columns.str...split.reset_index(inplace=True) 表示还原索引为普通的列。 split["年份"] = year 将年份添加到后面单独的一列。
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算及可视化 今天讲讲pandas模块 从Dataframe获取特定的行或者列数据,生成一个列表 Part 1:目标 ?...已知一个Df,如下图 包括3列["time", "pos", "value1"] 包括8行[0,1,2,3,4,5,6,7] 输出 获取["time", "pos", "value1"]任意一列数据,输出为列表...import pandas as pd dict_1 = {"time": ["2019-11-02", "2019-11-03", "2019-11-04", "2019-11-05",...", list1) print("time-列,数据类型:", type(list1)) print("pos-列:", list2) print("value1-列:", list3) print(
系统:Windows 10 编辑器:JetBrains PyCharm Community Edition 2018.2.2 x64 pandas:1.1.5 这个系列讲讲Python的科学计算及可视化...今天讲讲pandas模块 抽取Df中两列构成一个字典 Part 1:场景描述 已知df1,包括6列,"time", "pos", "value1", "value2", "value3", "value4...抽取其中的pos和value1列构成一个字典 由df生成字典 Part 2:代码 import pandas as pd dict_1 = {"time": ["2019-11-02", "
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算及可视化 今天讲讲pandas模块 对Df的特定列或者行进行与自身或者常数的运算 Part 1:场景描述 ?...import pandas as pd import numpy as np dict_1 = {"value1": [10, 20, 30, 40, 50, 60, 70, 80],...value1", "value2", "value3", "value4"]) print("\n", "df_1", "\n", df_1, "\n") print(type(df_1)) # 对某些列进行计算...['value1', 'value2'] else x)运用了apply方法,使用lambda函数,简单来理解就是对列名为['value1', 'value2']的每个元素进行平方,其余保持不变。
如果对PowerQuery的M语言还不熟悉,添加列的时候可以先尝试按示例添加列;即便已经很熟悉M语言了,也可以偷个懒,用按示例添加列可以省去敲繁琐的代码。...不写代码,输入示例,让计算机理解你的意思,跟你确认,确认的话,点个确定就大功告成了。微软硬生生地翻译为“示例中的列”,实际上翻译成“按示例添加列”更恰当。...操作步骤STEP 1 点击菜单栏添加列下的示例中的列,选从所有列或从所选内容,让计算机按照所有列/所选列去理解你的意思,通常选后者,更容易让计算机找到规律。...STEP 2 在具有代表性的行输入对应的你想要的结果,计算机会在上方询问你的意思,如果它的理解准确,点击确定。举例按示例添加列可以实现很多需求,挑选几个举例如下:1 条件判断,按指定条件返回相应的值。...举例1:按值赋值蔬菜后面输入1,水果后面输入2,返回结果,如下:举例2:数字分组67后面输入60-69,36后面输入30-39,返回结果,如下:2 内容修整,引用特定列,包括修整、清理和大小写转换。
系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算版块 今天讲讲pandas模块: 对列的每一个元素进行同样的字符串操作 今天讲其中的3个操作: 切片,字符串替换,字符串连接 Part 1:目标 ?...pdf文本文件的名称 这些文件的名称最终组成是: FINAL_列元素.文件类型 实现方法: 提取该列每个元素的最后一位字符 根据规则进行替换,获取文件类型 字符串连接,加上常量 FINAL_ 和 ....import pandas as pd dict_1 = {"C1": ["P1-CD", "P2-EF", "P3-BD", "P4-GF", "P5-HD", "P6-LF"],...综上,整体效果是按列整体进行字符串操作,无需遍历循环,大大减少代码量
def tt(x): if x.name == "distribution": return [el[0:10] for el in ...
领取专属 10元无门槛券
手把手带您无忧上云