首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

在 Linux 终端调整图像的大小

调整图像大小 我经常在我的 Web 服务器上使用 ImageMagick 来调整图像大小。例如,假设我想在我的个人网站上发一张我的猫的照片。...我手机里的照片非常大,大约 4000x3000 像素,有 3.3MB。这对一个网页来说太大了。我使用 ImageMagick 转换工具来改变照片的大小,这样我就可以把它放在我的网页上。... 的照片调整到一个更容易管理的 500 像素宽度,请输入: $ convert PXL_20210413_015045733.jpg -resize 500x sleeping-cats.jpg 现在新图片的大小只有...但是,如果只提供宽度,ImageMagic 就会为你做计算,并通过调整输出图像的高度比例来自动保留长宽比。...在 Linux 上安装 ImageMagick 在 Linux 上,你可以使用你的包管理器安装 ImageMagick。

4.5K40

使用OpenCV测量图像中物体的大小

原文链接:https://www.pyimagesearch.com/2016/03/28/measuring-size-of-objects-in-an-image-with-opencv/ 今天的文章是关于测量图像中物体大小和计算它们之间距离的系列文章的第二部分...测量图像中物体的大小类似于计算相机到物体的距离——在这两种情况下,我们都需要定义一个比率来测量每个计算对象的像素数。 我将其称为“像素/度量”比率,我将在下面中对其进行更正式的定义。...“单位像素”比率 为了确定图像中对象的大小,我们首先需要使用参考对象执行“校准”(不要与内在/外在校准混淆)。...在任何一种情况下,我们的引用都应该以某种方式是唯一可识别的。 在这个例子中,我们将使用0.25美分作为我们的参考对象,在所有的例子中,确保它总是我们图像中最左边的对象。...使用这个比率,我们可以计算图像中物体的大小。 用计算机视觉测量物体的大小 现在我们了解了“像素/度量”比率,我们可以实现用于测量图像中对象大小的Python驱动程序脚本。

2.7K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用Python和OpenCV检测图像中的多个亮点

    本文来自光头哥哥的博客【Detecting multiple bright spots in an image with Python and OpenCV】,仅做学习分享。...今天的博客文章是我几年前做的一个关于寻找图像中最亮点的教程的后续。 我之前的教程假设在图像中只有一个亮点你想要检测... 但如果有多个亮点呢?...如果您想在图像中检测多个亮点,代码会稍微复杂一点,但不会太复杂。不过不用担心:我将详细解释每一个步骤。 看看下面的图片: ? 在这幅图中,我们有五个灯泡。...measure.lable返回的label和我们的阈值图像有相同的大小,唯一的区别就是label存储的为阈值图像每一斑点对应的正整数。 然后我们在第5行初始化一个掩膜来存储大的斑点。...下面我提供了一个GIF动画,它可视化地构建了每个标签的labelMask。使用这个动画来帮助你了解如何访问和显示每个单独的组件: ? 然后第15行对labelMask中的非零像素进行计数。

    4.1K10

    OpenCV基础 | 3.numpy在图像处理中的基本使用

    作者:小郭学数据 源自:快学python 学习视频可参见python+opencv3.3视频教学 基础入门 今天写的是numpy在图像处理中的基本使用 1.获取图片高宽通道及图像反转 # 获取图片高宽通道及图像反转...函数执行前后滴答数之差与滴答频率之比为前后时间差 print("time: %s ms" % (time * 1000)) 默认输出时间为秒(s) 输出: time: 2870.7665066666664 ms 笔者使用的是...i5处理器 调用opencv的API实现图像反转 #调用opencv的API实现图像反转 def inverse(image): dst = cv.bitwise_not(image) # 按位取反...,白变黑,黑变白 cv.imshow("inverse_demo", dst) 所用时间 time: 100.06570666666667 ms 能调用API的尽量使用API接口,提升效率...("threechannels_image",img2) 构造的单通道和三通道图像如下: ?

    1.7K10

    使用Fastai中的学习率查找器和渐进式调整大小提高训练效率

    当我第一次开始使用fastai时,我非常兴奋地建立并训练了一个深度学习模型,它可以在很短的时间内产生惊人的结果。 我将在本文的最后链接我以前的文章,在这些文章中我用fastai记录了我的学习过程。...什么是渐进式调整大小,我们如何应用它? 就像Jeremy在他的书中所说的那样:使用小图像开始训练,然后使用大图像结束训练。将大多数时期的训练花费在较小的图像上,有助于更快地完成训练。...使用大图像完成训练会使最终精度更高。 这是一种实验技术,与获得相同大小的图像时相比,这种技术已被证明在获得更高的精度方面非常有用。 现在让我们看看如何训练多种尺寸,对吗?...我们将批处理大小设为64,图像大小设为较小的128x128。 dls = get_dls(64, 128) 现在,让我们继续计算在此部分训练中应使用的学习率。...现在我们已经在较小的图像尺寸上训练了模型,我们可以继续进行训练的第二部分。 在下一个模型微调中,我们使用批处理大小为128,图像大小为224。

    1.5K20

    在VMware虚拟机软件中安装的Ubuntu虚拟机的窗口不能自动调整大小的解决办法

    在 VMware虚拟机软件 中安装的 Ubuntu虚拟机 的窗口不能自动调整大小的解决办法:   配置虚拟机时,发现屏幕大小太小,一般解决思路是:需要安装vmware tools ,屏幕就会自适应 。...1)首先是打开虚拟机,在菜单栏找到“VM”选项,并在其子菜单中选择 “Guest” --> "Install/Upgrade VMware Tools" (注意:是要在虚拟机启动的状态下进行操作)。     ...8)重启之后在VMware界面的菜单栏找到 “View” --> “Autosize” --> “Autofit Window” 选定它。         ...(中文版是:查看 --> 自动调整大小 --> 自动适应客户机大小 )   9)Ubuntu分辨率调整,进入“系统设置”,找到 “显示” 点击进入调整你需要的分辨率,通常数值越大,界面就越大,能显示的内容就越多...至此配置成功,虚拟机可随VMware窗口大小自动调整。 问题解决之后的界面: ?

    14K30

    Roslyn 在项目文件使用条件判断 判断不相等判断大小判断文件存在判断多个条件使用的范围

    本文告诉大家如何在项目文件通过不同的条件使用不同的方法运行 本文是 手把手教你写 Roslyn 修改编译 的文章,在阅读本文之前,希望已经知道了大多数关于 msbuild 的知识 为了告诉大家如何使用判断...除了判断字符串,还可以判断字符串的大小,只能用来判断数值字符串,如果对于 16 进制的字符串,需要使用 0x 开始,如下面代码 使用0x放在字符串最前"> error MSB4086: 尝试在条件“'AA '>'10'”中对计算结果为“AA”而不是数字的“AA”进行数值比较...判断多个条件 除了使用开始的使用 - 等连接多个判断还可以使用 And Or 来判断多个条件,如下面代码 使用引号加上 And 如'And',这时 And 会作为字符串 如果使用多个条件,建议使用()包括多个条件,如下面代码,同时进行多个判断 <OutputType

    2.7K10

    图像凸性检测函数convexityDefects在Python2.7下使用opencv3.0的问题

    最近在学习Python下的OpenCV,在图像的凸性检测中,发现opencv3.0下的convexityDefects函数对图像的凸性缺陷处理有错误。...不知道是opencv3.0的版本问题还是我个人的错误代码。...例如使用的Python版本是2.7.6,使用的OpenCV版本是3.0,以下是图像凸性检测代码: import cv2 import numpy as np img = cv2.imread(...而如果使用OpenCV2.4.13版本,以下是图像凸性检测代码: import cv2 import numpy as np img = cv2.imread('star2.png') img_gray...总结: 出现这样的问题是因为OpenCV3.0版本还不够稳定还是我的编程错误呢?不知道各位有没有遇到类似的问题,特此提出来,希望大家讨论一下!

    1.4K00

    基于OpenCV的图像融合

    本期我们将一起学习如何使用OpenCV的进行图像拼接。 01. 目录 python 入门 步骤1 —图像导入 步骤2-调整图像大小 步骤3-融合图像 步骤4-导出结果 02....Python Python是一种通用的编程语言,在分析数据方面非常流行,它还可以让帮助我们快速工作并更有效地集成系统。 03. 入门 对于该项目,我们将仅使用OpenCV库。...我们可以使用pip python库管理器将它们安装在一行中: pip install numpy opencv-python 安装完成后,让我们将它们导入我们的代码编辑器。...第2步-调整图像大小 在此步骤中,我们将调整要混合的图像的大小。此步骤也可以称为预处理图像。我们先调整图像大小,以确保它们的尺寸相同。要使融合能够正常进行,需要使用相同的大小图像。...在调整大小之前,让我向您展示它们的原始大小: 如您所见,背景图像为853到1280像素。前景图像为1440至2560像素。我们将使用OpenCV的调整大小功能调整它们的大小。

    1.1K20

    基于OpenCV的图像融合

    本期我们将一起学习如何使用OpenCV的进行图像拼接。 01. 目录 python 入门 步骤1 —图像导入 步骤2-调整图像大小 步骤3-融合图像 步骤4-导出结果 02....Python Python是一种通用的编程语言,在分析数据方面非常流行,它还可以让帮助我们快速工作并更有效地集成系统。 03. 入门 对于该项目,我们将仅使用OpenCV库。...我们可以使用pip python库管理器将它们安装在一行中: pip install numpy opencv-python 安装完成后,让我们将它们导入我们的代码编辑器。...第2步-调整图像大小 在此步骤中,我们将调整要混合的图像的大小。此步骤也可以称为预处理图像。我们先调整图像大小,以确保它们的尺寸相同。要使融合能够正常进行,需要使用相同的大小图像。...在调整大小之前,让我向您展示它们的原始大小: 如您所见,背景图像为853到1280像素。前景图像为1440至2560像素。我们将使用OpenCV的调整大小功能调整它们的大小。

    97430

    Python中使用deepdiff对比json对象时,对比时如何忽略数组中多个不同对象的相同字段

    最近忙成狗了,很少挤出时间来学习,大部分时间都在加班测需求,今天在测一个需求的时候,需要对比数据同步后的数据是否正确,因此需要用到json对比差异,这里使用deepdiff。...一般是用deepdiff进行对比的时候,常见的对比是对比单个的json对象,这个时候如果某个字段的结果有差异时,可以使用exclude_paths选项去指定要忽略的字段内容,可以看下面的案例进行学习:...那么如果数据量比较大的话,单条对比查询数据效率比较低,因此,肯呢个会调用接口进行批量查询,然后将数据转成[{},{},{}]的列表形式去进行对比,那么这个时候再使用exclude_paths就无法直接简单的排除某个字段了...从上图可以看出,此时对比列表元素的话,除非自己一个个去指定要排除哪个索引下的字段,不过这样当列表的数据比较多的时候,这样写起来就很不方便,代码可读性也很差,之前找到过一个用法,后来好久没用,有点忘了,今晚又去翻以前写过的代码记录...,终于又给我找到了,针对这种情况,可以使用exclude_regex_paths去实现: 时间有限,这里就不针对deepdiff去做过多详细的介绍了,感兴趣的小伙伴可自行查阅文档学习。

    91620

    实战:基于OpenCV的人眼检测

    如果打算学习OpenCV、Numpy等Python库,那么这简单的12行代码很适合实践并体验这些库的实时使用。 二、OpenCV库 OpenCV 是 Intel 创建的图像处理库。...OpenCV 的主要优势之一是它经过高度优化,几乎可在所有平台上使用。 三、NumPy库 Numpy 是一个用于 Python 科学计算的库。...Numpy 数组包含相同类型的数据,我们可以使用属性“dtype”来获取数组元素的数据类型。...步骤3:读取图像并调整大小,复制图像和调用函数,如下所示: cv2.imread(“kid.jpg”) 加载图像,定义图像的尺寸 cv2.resize() :要调整图像大小 cvtColor() 用于将图像从一种颜色空间转换为另一种颜色空间...np.hstack() 用于在一个窗口中显示多个图像 cv2.imshow() 显示指定的图像 cv2.waitkey(0) 显示窗口,直到按下任何键 输出图像:

    80540

    使用Python实现医疗图像处理:探索AI在医学影像中的应用

    图像预处理 图像预处理是医疗图像处理的基础。我们可以使用OpenCV库对医学影像进行读取、灰度化、降噪等预处理操作。...图像分割 图像分割是医疗图像处理中重要的一步,通过将图像中的感兴趣区域分割出来,便于后续的特征提取和分析。我们可以使用阈值分割、边缘检测等方法进行图像分割。...特征提取与分类 特征提取是医疗图像处理中的关键步骤,通过提取图像中的特征,可以用于疾病的分类和诊断。我们可以使用深度学习模型进行特征提取和分类。...sigmoid') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # 数据预处理:调整图像大小...总结 通过本文的介绍,我们展示了如何使用Python构建一个医疗图像处理系统。该系统集成了图像预处理、图像分割、特征提取与分类等功能,能够辅助医生进行疾病的诊断和治疗。

    17610

    就是这么霸道,使用OpenCV10行代码实现人脸检测

    在本演示中,我们将拍摄一张图片并在其中搜索人脸,我们将使用预先训练好的分类器来执行此搜索,现在让我们开始使用预先训练的模型吧。...小伙伴们可以下载此 xml 文件并将其放置在与 python 文件相同的路径中,并且这里还有许多其他模型(例如:眼睛检测、全身检测、猫脸检测等)。...在这种方法中,一个窗口(默认大小为 20 x 20 像素)在图像上滑动(逐行)以查找面部特征。每次迭代后,图像都会按特定因子(由参数“ scaleFactor ”确定)按比例缩小(调整大小)。...存储每次迭代的输出,并在较小的、调整大小的图像上重复滑动操作。在初始迭代过程中可能会出现误报,本文稍后将对此进行更详细的讨论。...minNeighbors = 5 希望这篇文章能让我们对如何在 Python 中使用 OpenCV 进行人脸检测有一个基本的了解,我们也可以扩展此代码以跟踪视频中的人脸。

    1K20

    OpenCV人脸识别之一:数据收集和预处理

    在拿着手机自拍的过程中我想到,问什么不写一个程序用电脑的摄像头自拍呢,随便还能研究下怎么用opencv实现拍照的功能。经过一番实验(其实还是费了好长时间),终于写了一个拍照程序。...2、预处理 在得到自己的人脸照片之后,还需要对这些照片进行一些预处理才能拿去训练模型。所谓预处理,其实就是检测并分割出人脸,并改变人脸的大小与下载的数据集中图片大小一致。...人脸检测在之前的博客中已经做了介绍,这里就不再赘述。详情参考:OpenCV人脸检测(C++/Python)(http://www.jianshu.com/p/504c081d7397)。...OpenCV之识别自己的脸——C++源码放送 前言 在将近一年之前,我在CSDN专栏《OpenCV实践之路》中连续发了三篇博客,完整地描述了基于OpenCV进行人脸识别的全过程。...1、自动拍照 之前采集自己的图像的时候,程序设定是运行之后按’p’键拍照并保存图像,然后需要自己手动的去把图像大小转化为跟ORL人脸数据库中的图片大小一样。

    3.3K60

    OpenCV Error: Sizes of input arguments do not match (The operation is neither a

    检查数组形状首先,请确保您使用的输入数组具有相同的形状。如果数组具有不同的维度,您可能需要调整它们的形状或大小以匹配。您可以使用cv2.resize()或cv2.reshape()函数调整数组的形状。...然后,我们使用shape属性检查两个图像的形状是否匹配,如果不匹配,我们使用cv2.resize()函数调整image1的大小,使其与image2具有相同的行数和列数。...这个示例代码展示了在图像拼接应用场景中,如何处理不匹配的图像形状问题。您可以根据实际需求进行调整和修改。通道数(Channels) 通道数是指图像中使用的颜色通道数量。...它们可以帮助我们确定图像的维度信息和处理的方式,例如调整图像大小、拼接图像、分离颜色通道等。...结论在OpenCV中,“Sizes of input arguments do not match”错误发生在执行需要输入数组具有相同大小和通道数的操作时。

    66620

    实例应用(二):使用Python和OpenCV进行多尺度模板匹配

    这个函数接受三个参数,起始值,结束值,以及相等的块片数。在这个例子中,我们将从图像的原始大小的100%开始,并以20个相同大小的百分比块的方式降低到原始大小的20%。...然后,我们根据当前调整图像大小图像 的规模 在36号线和计算旧的宽度比新的宽度-稍后你会看到,但重要的是我们跟踪这个比例的。 在第41行,我们进行检查,以确保输入图像大于我们的模板匹配。...46行,我们使用与模板图像完全相同的参数计算图像的Canny边缘表示。...再次,我们的方法能够找到输入图像中的标志! 下面的图6也是如此: ? 图6:更多的与OpenCV和Python的多尺度模板匹配。请注意,“使命召唤4”中的“4”不包括在比赛中。...cod_logo.png --images images --visualize 1 您将看到类似以下的动画: 在每次迭代中,我们的图像被调整大小,并计算Canny边缘图。

    6.4K31

    移动设备上的多位数字识别

    CNN在主机上训练,移动设备加载训练好的参数。程序在全连接层中批量处理多个图像,加速CNN计算。 预处理 ? ? 图1:预处理和分割步骤中的输入和中间图像 用户拍摄写在浅色纸或纸板上的手写数字的照片。...预处理后的图像如图1(c)所示。 分割数字块 即使将图像尺寸调整为640×480,对于图像识别来说仍然太大。此外,用户可能想在同一页面上写多个数字,一次性找出每个数字是有用的。...在第一步中,我们使用轮廓查找器来定位每个数字位,并在每个数字位周围绘制边界框,然后通过计算和比较数字的位置,合并属于相同数的数字边界框。结果如图1(d)所示。...在第二步中,我们使用空格从左到右扫描合并的边界框(每列之间的空列),分割出数字块。数字块的大小调整为28×28,所以它与CNN的输入大小兼容。分段的数字块如图1(e)所示。...离线训练 我们使用Python构建和训练图2所示的CNN架构,使用MNIST作为训练数据集。使用MATLAB进行大小端格式转换后,每个输入图像是一个28×28的数字块,有着灰色背景和白色数字。

    2K20

    目标检测中的 Anchor 详解

    然而,注意到这些锚框中没有一个完美匹配图像中的实际物体。由于我们只使用一种形状和大小的锚框,它无法捕捉到不同尺寸和宽高比的物体。因此,仅靠这种方法不足以进行准确的目标检测。...如果我们将锚框直接放置在图像上,它们将具有相同的尺度,使得检测不同尺寸的物体变得困难。如果我们将锚框直接放置在图像上,它们将具有固定的大小,并且不会调整以适应不同物体的大小。...在目标检测中生成锚框 一旦确定了锚框的大小和宽高比,我们生成多个不同大小和变化的锚框。...步骤1:在特征图上生成锚框 图像首先通过CNN传递,提取不同层的特征图。 在每个特征图上,每个空间位置放置多个不同大小和宽高比的锚框。 每个锚框作为物体可能位置的起点。...下载2:Python视觉实战项目52讲在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取

    7510
    领券