/ 前两篇文章: 使用Python和OpenCV顺时针排序坐标 使用OpenCV测量图像中物体的大小 已经完成了测量物体大小的任务,今天进行最后一部分:计算图片中物体之间的距离。...给定这样一个参考对象,我们可以使用它来计算图像中对象的大小。 今天,我们将结合本系列前两篇来计算对象之间的距离。 计算物体之间的距离与计算图像中物体的大小算法思路非常相似——都是从参考对象开始的。...第16行和第17行通过取边界框在x和y方向上的平均值来计算旋转后的边界框的中心(x, y)坐标。...我们首先获取(排序后的)最小旋转边界框坐标,并分别计算四个顶点之间的中点(第10-15行)。 然后计算中点之间的欧氏距离,给出我们的“像素/尺寸”比例,来确定一英寸为多少像素宽度。...最后一个例子计算了我们的参考对象(一张3.5英寸x 2英寸的名片)和一组7英寸的黑胶唱片和信封之间的距离:
/ 前两篇文章: 使用Python和OpenCV顺时针排序坐标 使用OpenCV测量图像中物体的大小 已经完成了测量物体大小的任务,今天进行最后一部分:计算图片中物体之间的距离。...给定这样一个参考对象,我们可以使用它来计算图像中对象的大小。 今天,我们将结合本系列前两篇来计算对象之间的距离。 计算物体之间的距离与计算图像中物体的大小算法思路非常相似——都是从参考对象开始的。...第16行和第17行通过取边界框在x和y方向上的平均值来计算旋转后的边界框的中心(x, y)坐标。...我们首先获取(排序后的)最小旋转边界框坐标,并分别计算四个顶点之间的中点(第10-15行)。 然后计算中点之间的欧氏距离,给出我们的“像素/尺寸”比例,来确定一英寸为多少像素宽度。...然后,第12行计算参考位置和对象位置之间的欧式距离,然后除以“像素/度量”,得到两个对象之间的实际距离(以英寸为单位)。然后在图像上标识出计算的距离(第13-15行)。
与使用原始检测框中的点相比,这可以大大改善社会距离的测量。 对于检测到的每个人,将返回构建边界框所需的2个点,这两个点是边界框的左上角和右下角。...通过获取两点之间的中点来计算边界框的质心,使用此结果,计算位于边界框底部中心的点的坐标,我认为这一点(称为“基点”)是图像中人坐标的最佳表示。 然后使用变换矩阵为每个检测到的基点计算变换后的坐标。...在每帧上调用此函数后,将返回一个包含所有新转换点的列表,从这个列表中,计算每对点之间的距离。...其余的是简单的数学运算:使用math.sqrt()函数计算两点之间的距离。选择的阈值为120像素,因为它在我们的场景中大约等于2英尺。...但该项目仅是概念的证明,并且由于道德和隐私问题,不能用于监视公共或私人区域的社交距离。 这个项目存在一些小的缺陷,改进思路如下: ·使用更快的模型来执行实时社交距离分析。
这篇博客将介绍如何使用 Meanshift 和 Camshift 算法来查找和跟踪视频中的对象。...它再次应用具有新缩放搜索窗口和先前窗口位置的均值变换,直到达到所需的精度; 1....源码 2.1 MeanShift # 使用MeanShift均移和 CAMshift(Continuously Adaptive Meanshift)持续自适应均移以寻找和追踪对象 # CAMshift...cv2.COLOR_BGR2HSV) # 为了避免由于低光导致的错误值,使用 cv2.inRange() 函数丢弃低光值。...参考 docs.opencv.org/3.0-beta/do… github.com/opencv/open… 可交互式的Camshift
今天我们将学习如何计算图像的色彩,然后,我们将使用OpenCV和Python实现色彩度量。 在实现了色彩度量之后,我们将根据颜色对给定的数据集进行排序,并使用我们上周创建的图像蒙太奇工具显示结果。...我们将发现,这是计算图像色彩的一种非常有效和实用的方法。 接下来,我们将使用Python和OpenCV代码实现这个算法。...在OpenCV中实现图像色彩度量 现在我们对色彩度度量有了基本的了解,让我们使用OpenCV和NumPy来计算它。 在本节中,我们将: 导入必要的Python包。 解析命令行参数。...注意:第3、6和9行使用了颜色空间,这超出了本文的范围。如果你有兴趣学习更多关于色彩空间的知识,请参考实用Python和OpenCV以及PyImageSearch Gurus课程。...他们的方法是基于对手颜色空间中像素强度值的均值和标准差。这个指标是通过检验实验指标和参与者在他们的研究中分配给图像的色彩之间的相关性而得出的。
本文来自光头哥哥的博客【Detecting multiple bright spots in an image with Python and OpenCV】,仅做学习分享。...原文链接:https://www.pyimagesearch.com/2016/10/31/detecting-multiple-bright-spots-in-an-image-with-python-and-opencv...本项目的关键步骤是对上图中的每个区域进行标记,然而,即使在应用了腐蚀和膨胀后,我们仍然想要过滤掉剩余的小块儿区域。...下面我提供了一个GIF动画,它可视化地构建了每个标签的labelMask。使用这个动画来帮助你了解如何访问和显示每个单独的组件: ? 然后第15行对labelMask中的非零像素进行计数。...最后,第17行和第18行显示了输出结果。 运行程序,你应该会看到以下输出图像: ? 请注意,每个灯泡都被独特地标上了圆圈,圆圈围绕着每个单独的明亮区域。 ? THE END
在使用OpenCV和Python处理视频文件时,有两种方法来确定帧的总数: 方法1:使用OpenCV提供的内置属性访问视频文件元信息并返回帧总数的快速、高效的方法。...不用浪费的CPU来循环解码。 但是有一个问题,因为OpenCV版本不同和安装的视频编解码器的多样性,导致方法1有很多bug。...计算帧数的简单方法 在OpenCV中计算视频帧数的第一种方法非常快——它只是使用OpenCV提供的内置属性来访问视频文件并读取视频的元信息。...3行上导入必要的Python包。...我们需要is_cv3函数来检查实际的OpenCV使用的是cv2还是OpenCV的哪个版本。 我们在第5行定义count_frames函数。
距离变换 3. opencv有关函数的用法 二、基于距离的分水岭分割流程 三、python代码实现 一、 原理 1....这是一种交互式的图像分割,我们要做的就是给我们已知的对象打上不同的标签。如果某个区域肯定是前景或对象,就使用某个颜色(或灰度值)标签标记它。如果某个区域肯定不是对象而是背景就使用另外一个颜色标签标记。...每一次灌水,我们的标签就会被更新,当两个不同颜色的标签相遇时就构建堤坝,直到将所有山峰淹没,最后我们得到的边界对象(堤坝)的值为 -1。 2....最常见的距离变换算法就是通过连续的腐蚀操作来实现,腐蚀操作的停止条件是所有前景像素都被完全。 腐蚀。这样根据腐蚀的先后顺序,我们就得到各个前景像素点到前景中心骨架像素点的距离。...转成灰度图像 二值化处理、形态学操作 距离变换 寻找种子、生成marker 实施分水岭算法、输出分割后的图像 三、python代码实现 # -*- coding: UTF-8 -*- """ @公众号
显然OpenCV中常见的轮廓分析无法获得上面的中心红色线段,本质上这个问题是如何提取二值对象的骨架,提取骨架的方法在OpenCV的扩展模块中,另外skimage包也支持图像的骨架提取。...01 安装skimage与opencv扩展包 Python环境下安装skimage图像处理包与opencv计算机视觉包,只需要分别执行下面两行命令: pip install opencv-contrib-python...pip install skimage 导入使用 from skimage import morphology import cv2 as cv 02 使用skimage实现骨架提取 有两个相关的函数实现二值图像的骨架提取...,一个是基于距离变换实现的medial_axis方法;另外一个是基于thin的skeletonize骨架提取方法。...OpenCV实现骨架提取 OpenCV的图像细化的骨架提取方法在扩展模块中,因此需要直接安装opencv-python的扩展包。
《用python和opencv检测图像中的条形码》 概述 ?...如果轮廓区域足够大,在第9-11行计算图中的选择边界框,特别注意OpenCV2使用的是cv2.cv.BoxPoints函数,OpenCV3使用的是cv2.boxPoints函数。...现在我们已经对边界框进行了排序,我们可以计算一系列的中点: # 打开有序的边界框,然后计算左上和右上坐标之间的中点, # 再计算左下和右下坐标之间的中点 (tl, tr, br,...,然后计算左上和右上点之间的中点,再计算左下和右下点之间的中点。...总结 在本文中,我们学习了如何通过使用python和OpenCV来测量图片中的物体的大小。
超像素分割可以用于跟踪,标签分类,超像素词袋,视频前景分割,骨架提取,人体姿态估计,医学图像分割等对分割的速度有要求的应用。...目前常用的超像素分割算法有SLIC、SEEDS和LSC。 超像素算法的优秀属性: 超像素应当良好地粘附到图像边界。...颜色距离和欧式距离定义为: image.png 用它们在簇内的各自的最大距离 N_{s} 和 N_{c} 来标准化颜色接和空间的接近程度,用 D’ 表示: image.png 给定群集内预期的最大空间距离对应于采样间隔...因为颜色距离可以从簇到簇和图像到图像显著不同。...这个问题可以通过将N_c固定为常数 m来避免 : image.png 变形后得到 D 即为 我们在实践中使用的距离测量 : image.png 总结流程 Python 示例 官方文档
OpenCV直线拟合检测 霍夫直线检测容易受到线段形状与噪声的干扰而失真,这个时候我们需要另辟蹊径,通过对图像进行二值分析,提取骨架,对骨架像素点拟合生成直线,这种做法在一些场景下非常有效,而且效果很好...,在各个论坛以及QQ群中经常有人问OpenCV中如何通过一些点来拟合直线,其实OpenCV中都有现成的函数可以使用。...在介绍具体的编码之前,首先介绍一下相关知识点: 一:相关知识点 1. 距离变换 距离变换是二值图像处理与操作中常用手段,在骨架提取,图像窄化中常有应用。...其中当选择DIST_L2与DIST_MASK_PRECISE时候,OpenCV会使用TBB并行计算加速,DIST_L1与DIST_C是比较精确的距离计算方式、DIST_L2是比较快而粗糙的距离计算方式。...水平与垂直投影 关于这个OpenCV中我没有发现直接可以使用的相关API,所以我自己写了点代码,二值图像的水平或者垂直投影可以用于粘连字符分割、对象分离,发现局部极大值像素等处理,是非常重要的二值图像分析与处理手段
常见的处理方法包括直方图均衡化、对比度增强等,以提高图像的可视化效果,突出水膜与背景之间的差异。降噪处理:使用滤波器(如高斯滤波器、均值滤波器)去除图像中的噪声,保持水膜的边缘清晰。...这有助于区分水膜与土壤颗粒之间的边界,从而可以准确测量水膜的厚度和范围。2) 分割水膜区域阈值分割:使用基于灰度或颜色的阈值分割算法,将图像中水膜区域与背景(包括土壤)分离。...水膜厚度与面积计算:厚度计算:基于图像中水膜的像素距离,可以估算水膜的厚度。通过将像素距离与实际物理距离的比例进行换算,可以得到真实的水膜厚度。...以 Python 为例,可以使用 pip 命令进行安装:pip install opencv-python。...如果需要使用 OpenCV 的 contrib 模块(包含一些额外的功能),可以安装 opencv-python-headless 和 opencv-contrib-python。
1写在前面 ---- 博文内容涉及图像处理工具包 imutils 的简单介绍以及使用Demo 理解不足小伙伴帮忙指正 对每个人而言,真正的职责只有一个:找到自我。...所有其它的路都是不完整的,是人的逃避方式,是对大众理想的懦弱回归,是随波逐流,是对内心的恐惧 ——赫尔曼·黑塞《德米安》 ---- imutils 是一个基于 OpenCV 的 Python 图像处理库...它包含了许多函数来简化常见的操作,如调整大小、旋转和显示图像等。...url 是图像的 URL。 auto_canny(image, sigma=0.33):使用自动确定的阈值将 Canny 边缘检测算法应用于图像。...find_function(name):按名称查找 imutils 包中的函数。name 是要查找的函数的名称。
倘若轮廓区域足够大,我们在第 9-11 行计算图像的旋转边界框,特别注意使用 OpenCV 2.4 的 cv2.cv.BoxPoints 函数和 OpenCV 3 的 cv2.boxPoints 方法。...,计算左上角和右上角之间的中点,然后计算右下角之间的中点。...图 2:使用 OpenCV 、Python 、计算机视觉和图像处理技术测量图像中物体的大小。 上图所示,我们已经成功地计算出图像中每个物体的大小——我们的名片被正确地显示为 3.5 英寸 x 2英寸。...图4:最后一个用 Python + OpenCV 测量图像中物体大小的例子。 同样,结果也不是很完美,但这是由于(1)视角和(2)透镜失真,如上所述。...总结 在本篇博客中,我们学习了如何通过 Python 和 OpenCV 检测图像中的物体大小。
实现思路 当我在项目中遇到这个问题时,我花了很多时间尝试使用不同的参数或不同的OpenCV函数来检测轮廓,但没有一个有效。...然后,我做了更多的研究,在OpenCV的论坛上找到了一篇帖子,它提到了凝聚聚类。但是,没有给出源代码。我还发现sklearn支持聚合聚类,但我没有使用它,原因有两个: 这个功能对我来说似乎很复杂。...我不知道如何输入正确的参数,我怀疑轮廓检测的数据类型是否适合该函数。 我需要使用python 2.7、OpenCV 3.3.1和Numpy 1.11.3。...以下版本适用于Python3,若需要要在Python2.7中使用它,只需将“range”更改为“xrange”。 #!...,并计算两个矩形之间的距离。
根据高斯分布,离群点权重应该尽可能的小,这样就可以降低它的影响,OpenCV中的直线拟合就是就权重最小二乘完成的,在生成权重时候OpenCV支持几种不同的距离计算方法,分别如下: 其中DIST_L2是最原始的最小二乘...然后用基于权重的最小二乘估算拟合结果如下: 函数与实现源码分析 OpenCV中直线拟合函数支持上述六种距离计算方式,函数与参数解释如下: void cv::fitLine( InputArray...,支持2D与3D distType是选择距离计算方式 param 是某些距离计算时生成权重需要的参数 reps 是前后两次原点到直线的距离差值,可以看成拟合精度高低 aeps是前后两次角度差值,表示的是拟合精度...: 通过OpenCV的距离变换,骨架提取,然后再直线拟合,使用DIST_L1得到的结果如下: OpenCV-C++/Python视频教程30课时,请看B站: https://www.bilibili.com.../video/BV1hM4y1M7vQ (python版本) https://www.bilibili.com/video/BV1i54y1m7tw (C++版本)
根据高斯分布,离群点权重应该尽可能的小,这样就可以降低它的影响,OpenCV中的直线拟合就是就权重最小二乘完成的,在生成权重时候OpenCV支持几种不同的距离计算方法,分别如下: 其中DIST_L2是最原始的最小二乘...然后用基于权重的最小二乘估算拟合结果如下: 函数与实现源码分析 OpenCV中直线拟合函数支持上述六种距离计算方式,函数与参数解释如下: void cv::fitLine(...,支持2D与3D distType是选择距离计算方式 param 是某些距离计算时生成权重需要的参数 reps 是前后两次原点到直线的距离差值,可以看成拟合精度高低 aeps是前后两次角度差值,表示的是拟合精度...: 通过OpenCV的距离变换,骨架提取,然后再直线拟合,使用DIST_L1得到的结果如下: OpenCV-C++/Python视频教程30课时,请看B站: https://www.bilibili.com.../video/BV1hM4y1M7vQ (python版本)https://www.bilibili.com/video/BV1i54y1m7tw (C++版本) 扫码查看OpenCV+OpenVIO+
导 读 本文主要介绍轮廓逼近的原理及其在OpenCV中的使用演示。同时可在文末获取Python-OpenCV学习文档pdf。...OpenCV中的使用实例。...如下图所示: 给定曲线的起点和终点,算法将首先找到距离连接两个参考点的直线距离最大的顶点。我们称它为最大点。...如果最大点位于小于阈值的距离,我们自动忽略起点和终点之间的所有顶点,使曲线成为一条直线。 如果最大点位于阈值之外,我们将递归地重复该算法,上图使最大点为参考之一,并重复检查过程。...Python-OpenCV相关内容,下面有一份不错的文档共参考。
《用python和opencv检测图像中的条形码》 第六期《OpenCV测量物体的尺寸技能 get~》 第七期《还在用肉眼找不同吗?...在这篇文章中,我们将讨论如何使用Python和OpenCV执行图像拼接。鉴于一对共享一些共同区域的图像,我们的目标是“缝合”它们并创建全景图像场景。...我们的想法是在同一图像的不同比例版本上应用DoD。它还使用相邻像素信息来查找和细化关键点和相应的描述子。 首先,我们需要加载2个图像,查询图片和训练图片。最初,我们首先从两者中提取关键点和描述符。...对于SIFT和SURF,OpenCV建议使用欧几里德距离。对于其他特征提取器,如ORB和BRISK,建议使用汉明距离。...基本上,我们迭代KNN返回的每个对并执行距离测试。对于每对特征(f1,f2),如果f1和f2之间的距离在一定比例内,我们保留它,否则,我们将它丢弃。此外,必须手动选择比率值。
领取专属 10元无门槛券
手把手带您无忧上云