首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用numpy获取按另一列排序的给定列值的行索引

可以通过以下步骤实现:

  1. 导入numpy库:在代码中导入numpy库,以便使用其中的函数和方法。
代码语言:txt
复制
import numpy as np
  1. 创建一个二维数组:使用numpy创建一个二维数组,表示数据集。
代码语言:txt
复制
data = np.array([[1, 4, 7],
                 [2, 5, 8],
                 [3, 6, 9]])
  1. 获取按另一列排序的给定列值的行索引:使用numpy的argsort函数,根据指定列的值对数据集进行排序,并返回排序后的行索引。
代码语言:txt
复制
column_to_sort = 1  # 指定要排序的列索引
sorted_indexes = np.argsort(data[:, column_to_sort])
  1. 打印排序后的行索引:使用print函数打印排序后的行索引。
代码语言:txt
复制
print(sorted_indexes)

完整的代码示例:

代码语言:txt
复制
import numpy as np

data = np.array([[1, 4, 7],
                 [2, 5, 8],
                 [3, 6, 9]])

column_to_sort = 1  # 指定要排序的列索引
sorted_indexes = np.argsort(data[:, column_to_sort])

print(sorted_indexes)

这段代码的输出结果将会是按第二列值排序后的行索引。

对于这个问题,腾讯云没有特定的产品或链接与之相关。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Pandas库的基础使用系列---获取行和列

前言我们上篇文章简单的介绍了如何获取行和列的数据,今天我们一起来看看两个如何结合起来用。获取指定行和指定列的数据我们依然使用之前的数据。...我们先看看如何通过切片的方法获取指定列的所有行的数据info = df.loc[:, ["2021年", "2017年"]]我们注意到,行的位置我们使用类似python中的切片语法。...接下来我们再看看获取指定行指定列的数据df.loc[2, "2022年"]是不是很简单,大家要注意的是,这里的2并不算是所以哦,而是行名称,只不过是用了padnas自动帮我创建的行名称。...如果要使用索引的方式,要使用下面这段代码df.iloc[2, 2]是不是很简单,接下来我们再看看如何获取多行多列。为了更好的的演示,咱们这次指定索引列df = pd.read_excel(".....通常是建议这样获取的,因为从代码的可读性上更容易知道我们获取的是哪一行哪一列。当然我们也可以通过索引和切片的方式获取,只是可读性上没有这么好。

63800
  • 用过Excel,就会获取pandas数据框架中的值、行和列

    在Excel中,我们可以看到行、列和单元格,可以使用“=”号或在公式中引用这些值。...要获取前三行,可以执行以下操作: 图8 使用pandas获取单元格值 要获取单个单元格值,我们需要使用行和列的交集。...以下两种方法都遵循这种行和列的思想。 方括号表示法 使用方括号表示法,语法如下:df[列名][行索引]。这有时称为链式索引。...记住这种表示法的一个更简单的方法是:df[列名]提供一列,然后添加另一个[行索引]将提供该列中的特定项。 假设我们想获取第2行Mary Jane所在的城市。...接着,.loc[[1,3]]返回该数据框架的第1行和第4行。 .loc[]方法 正如前面所述,.loc的语法是df.loc[行,列],需要提醒行(索引)和列的可能值是什么?

    19.2K60

    动态数组公式:动态获取某列中首次出现#NA值之前一行的数据

    标签:动态数组 如下图1所示,在数据中有些为值错误#N/A数据,如果想要获取第一个出现#N/A数据的行上方行的数据(图中红色数据,即图2所示的数据),如何使用公式解决?...如果想要只获取第5列#N/A值上方的数据,则将公式稍作修改为: =INDEX(LET(data,A2:E18,i,MIN(IFERROR(BYCOL(data,LAMBDA(x,MATCH(TRUE,ISNA...(x),0))),""))-1,DROP(TAKE(data,i),i-1)),,5) 也可以使用公式: =LET(d,FILTER(E2:E18,NOT(ISNA(E2:E18))),DROP(d,ROWS...(d)-1)) 如果数据区域中#N/A值的位置发生改变,那么上述公式会自动更新为最新获取的值。...当然,也可以使用VBA来解决: Sub CopyValues() Dim rng As Range Dim i As Long With Worksheets("Sheet1") Set

    15210

    python数据分析——数据的选择和运算

    而在选择行和列的时候可以传入列表,或者使用冒号来进行切片索引。...数据获取 ①列索引取值 使用单个值或序列,可以从DataFrame中索引出一个或多个列。...关键技术:可以通过对应的下标或行索引来获取值,也可以通过值获取对应的索引对象以及索引值。 具体程序代码如下所示: ②取行方式 【例】通过切片方式选取多行。...关键技术:可以利用行号索引和count()方法来进行计数,程序代码如下所示: 【例】对于给定的DataFrame数据,按索引值进行求和并输出结果。...Dataframe的排序可以按照列或行的名字进行排序,也可以按照数值进行排序。 DataFrame数据排序主要使用sort_values()方法,该方法类似于sql中的order by。

    19310

    70个NumPy练习:在Python下一举搞定机器学习矩阵运算

    输入: 输出: 答案: 12.从一个数组中删除存在于另一个数组中的元素? 难度:2 问题:从数组a中删除在数组b中存在的所有元素。 输入: 输出: 答案: 13.获取两个数组元素匹配的索引号。...难度:2 问题:获取数组a和b的元素匹配的索引号 输入: 输出: 答案: 14.从numpy数组中提取给定范围内的所有数字? 难度:2 问题:从数组a提取5到10之间的所有元素。...答案: 44.如何按列排序二维数组? 难度:2 问题:根据sepallength列对iris数据集进行排序。 答案: 45.如何在numpy数组中找到最频繁出现的值?...难度:2 问题:从数组a中,替换大于30包括30且小于10到10的所有值。 输入: 答案: 48.如何从numpy数组中获取n个值的位置? 难度:2 问题:获取给定数组a中前5个最大值的位置。...难度:2 问题:为给定的数字数组a排序。 输入: 输出: 答案: 55.如何使用numpy对多维数组中的元素进行排序? 难度:3 问题:创建一个与给定数字数组a相同形式的排列数组。

    20.7K42

    Numpy进阶之排序小技巧

    使用方法: numpy.sort(a, axis=-1, kind=None, order=None) 参数: a : 要排序的数组; axis :按什么轴进行排序,默认按最后一个轴进行排序; kind...使用方法(和sort类似): numpy.argsort(a, axis=-1, kind=None, order=None) 参数: a : 要排序的数组; axis :按什么轴进行排序,默认按最后一个轴进行排序...) ''' 按字段属性进行排序,并获取索引。...使用方法: numpy.lexsort(keys, axis=-1) 参数: keys :序列或元组,要排序的不同的列; axis :沿指定轴进行排序; 说明: 使用键序列执行间接稳定排序。...给定多个排序键(可以将其解释为电子表格中的列),lexsort返回一个整数索引数组,该数组描述按多个列排序的顺序。 序列中的最后一个键用于主排序顺序,倒数第二个键用于辅助排序顺序,依此类推。

    1.1K40

    python数据科学系列:pandas入门详细教程

    这里提到了index和columns分别代表行标签和列标签,就不得不提到pandas中的另一个数据结构:Index,例如series中标签列、dataframe中行标签和列标签均属于这种数据结构。...例如,当标签列类型(可通过df.index.dtype查看)为时间类型时,若使用无法隐式转换为时间的字符串作为索引切片,则引发报错 ? 切片形式返回行查询,且为范围查询 ?...切片类型与索引列类型不一致时,引发报错 loc/iloc,最为常用的两种数据访问方法,其中loc按标签值访问、iloc按数字索引访问,均支持单值访问或切片查询。...sort_index、sort_values,既适用于series也适用于dataframe,sort_index是对标签列执行排序,如果是dataframe可通过axis参数设置是对行标签还是列标签执行排序...;sort_values是按值排序,如果是dataframe对象,也可通过axis参数设置排序方向是行还是列,同时根据by参数传入指定的行或者列,可传入多行或多列并分别设置升序降序参数,非常灵活。

    15.1K21

    NumPy 笔记(超级全!收藏√)

    花式索引根据索引数组的值作为目标数组的某个轴的下标来取值。对于使用一维整型数组作为索引,如果目标是一维数组,那么索引的结果就是对应位置的元素;如果目标是二维数组,那么就是对应下标的行。 ...按行,‘F’ – 按列,‘A’ – 原顺序,‘k’ – 元素在内存中的出现顺序。 ...C') 参数说明:  order:‘C’ – 按行,‘F’ – 按列,‘A’ – 原顺序,‘K’ – 元素在内存中的出现顺序。 ...numpy.insert  numpy.insert 函数在给定索引之前,沿给定轴在输入数组中插入值。  如果值的类型转换为要插入,则它与输入数组不同。 插入没有原地的,函数会返回一个新数组。...按列排序,axis=1 按行排序kind: 默认为’quicksort’(快速排序)order: 如果数组包含字段,则是要排序的字段  numpy.argsort()  numpy.argsort()

    4.6K30

    数据导入与预处理-课程总结-01~03章

    [1]) # 获取索引为1的一行元素 print(array_2d[1, 2]) # 获取行索引为1、列索引为2的元素 2.3.2 使用花式索引访问元素 访问一维数组 import numpy as np...排序 排序1 - 按值排序 .sort_values pandas中可以使用sort_values()方法将Series、DataFrmae类对象按值的大小排序。...axis:表示轴编号(排序的方向),0代表按行排序,1代表按列排序。 ascending:表示是否以升序方式排序,默认为True。若设置为False,则表示按降序方式排序。...),0代表按行排序,1代表按列排序。...使用[]访问数据 变量[索引] 需要说明的是,若变量的值是一个Series类对象,则会根据索引获取该对象中对应的单个数据;若变量的值是一个DataFrame类对象,在使用“[索引]”访问数据时会将索引视为列索引

    3.1K20

    看图学NumPy:掌握n维数组基础知识点,看这一篇就够了

    从NumPy数组中获取数据的另一种超级有用的方法是布尔索引,它允许使用各种逻辑运算符,来检索符合条件的元素: ? 注意:Python中的三元比较3NumPy数组中不起作用。...因此在二维数组中,如果axis=0是按列,那么axis=1就是按行。 ? 矩阵运算 除了普通的运算符(如+,-,*,/,//和**)以元素方式计算外,还有一个@运算符可计算矩阵乘积: ?...二维及更高维度中,argmin和argmax函数返回最大最小值的索引: ? all和any两个函数也能使用axis参数: ?...不过NumPy具有多个函数,允许按列进行排序: 1、按第一列对数组排序:a[a[:,0].argsort()] ? argsort排序后,此处返回原始数组的索引数组。...2、有一个辅助函数lexsort,该函数按上述方式对所有可用列进行排序,但始终按行执行,例如: a[np.lexsort(np.flipud(a[2,5].T))]:先通过第2列排序,再通过第5列排序;

    6K20

    图解NumPy:常用函数的内在机制

    Python 列表与 NumPy 数组的对比 为了获取 NumPy 数组中的数据,另一种超级有用的方法是布尔索引(boolean indexing),它支持使用各类逻辑运算符: any 和 all 的作用与在...为了获取适用于任意维度的通用符号,NumPy 引入了 axis 的概念:事实上,axis 参数的值是相关问题中索引的数量:第一个索引为 axis=0,第二个索引为 axis=1,以此类推。...因此在二维情况下,axis=0 是按列计算,axis=1 是按行计算。...但幸运的是,NumPy 提供了一些支持按列排序的辅助函数——或有需要的话可按多列排序: 1. a[a[:,0].argsort()] 可按第一列对数组排序: 这里 argsort 会返回原数组排序后的索引的数组...a[:,0].argsort(kind='stable')] 2. lexsort 函数能使用上述方式根据所有列进行排序,但它总是按行执行,而且所要排序的行的顺序是反向的(即自下而上),因此使用它时会有些不自然

    3.7K10

    图解NumPy:常用函数的内在机制

    Python 列表与 NumPy 数组的对比 为了获取 NumPy 数组中的数据,另一种超级有用的方法是布尔索引(boolean indexing),它支持使用各类逻辑运算符: any 和 all 的作用与在...为了获取适用于任意维度的通用符号,NumPy 引入了 axis 的概念:事实上,axis 参数的值是相关问题中索引的数量:第一个索引为 axis=0,第二个索引为 axis=1,以此类推。...因此在二维情况下,axis=0 是按列计算,axis=1 是按行计算。...但幸运的是,NumPy 提供了一些支持按列排序的辅助函数——或有需要的话可按多列排序: 1. a[a[:,0].argsort()] 可按第一列对数组排序: 这里 argsort 会返回原数组排序后的索引的数组...a[:,0].argsort(kind='stable')] 2. lexsort 函数能使用上述方式根据所有列进行排序,但它总是按行执行,而且所要排序的行的顺序是反向的(即自下而上),因此使用它时会有些不自然

    3.3K20

    Python进阶之NumPy快速入门(四)

    axis=0 按列排序,axis=1 按行排序,默认是按axis=1排序,也就是行排序。...其格式如下: numpy.argmax(a, axis) 参数说明: 当只有a的时候,输出结果是数组所有元素中的最大值对应的总索引 当axis=0的时候,输出为每一列最大元素的索引 当axis=1的时候...其中数组a中最大元素是90,总索引为7。当axis=0的时候,从左到右每一列最大数字对应的索引值分别为[1,2,0]。当axis=1的时候,从上到下每一行最大数字对应的索引值分别为[2,0,1]。...一个有六个元素是非零的,运行结果的形式是先给定行索引,然后是列索引。然后我们再把索引作为数组b的索引就可以挑选出数组b中所有非零元素,返回形式为一维数组。...() numpy.where() 函数返回输入数组中满足给定条件的元素的索引。

    85530

    Python数据分析笔记——Numpy、Pandas库

    (3)获取DataFrame的值(行或列) 通过查找columns值获取对应的列。(下面两种方法) 通过索引字段ix查找相应的行。 (4)对列进行赋值处理。 对某一列可以赋一个标量值也可以是一组值。...Pandas基本功能 1、重新索引 Pandas对象的一个方法就是重新索引(reindex),其作用是创建一个新的索引,pandas对象将按这个新索引进行排序。对于不存在的索引值,引入缺失值。...也可以按columns(行)进行重新索引,对于不存在的列名称,将被填充空值。 对于不存在的索引值带来的缺失值,也可以在重新索引时使用fill_value给缺失值填充指定值。...(1)Series数据结构的排序和排名 a、按索引值进行排序 b、按值进行排序 默认情况下,排序是按升序排列的,但也可通过ascending=False进行降序排列。...obj.rank() (2)DataFrame数据结构的排序和排名 按索引值进行排列,一列或多列中的值进行排序,通过by将列名传递给sort_index. 5、缺失数据处理 (1)滤出缺失数据 使用data.dropna

    6.4K80
    领券