首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python如何使用Matplotlib模块的pie()函数绘制饼形图?

1 模块安装 先安装matplotlib: pip install matplotlib 安装numpy模块,安装matplotlib时候就已经安装这个依赖了,所以不用装了,当然也可以独立安装: 图片...安装pandas: pip install numpy 2 实现思路 数据存放在excel中,对指定数据进行分析,所以需要用到pandas; 对指定数据分析后绘制饼形图,需要用到Matplotlib模块的...实现这个功能,主要使用了matplotlib 中 pyplot里的pie()函数; pie()函数部分源码: Autogenerated by boilerplate.py....,如边界线粗细和颜色 textprops 设置饼图文本属性,如字体大小和颜色 center 饼图的中心点位置,默认原点 frame 是否显示饼形图后的图框 4 实现过程 4.1 导入包 import...模块的pie()函数绘制饼形图 import pandas as pd from matplotlib import pyplot as plt class TestPie(): def

434130
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用Matplotlib绘制图的常见问题和答案

    Matplotlib是最受欢迎的二维图形库,但有时让你的图变得像你想象中好并不容易。 如何更改图例上的标签名称?如何设置刻度线?如何将刻度更改为对数刻度?如何在我的图中添加注释和箭头?...如何在我的图中添加网格线? 本文收集了有关如何自定义Matplotlib图的常见问题和答案。这可以作为快速进行Matplotlib绘图的一个很好的速查表,而不是Matplotlib库的完整介绍。...本文介绍的主题包括图和图的属性,坐标轴,图例,注释和保存图。 开始 首先,请确保导入matplotlib。...子图是一个图中一组较小的坐标轴。下面是2 x 2形式的四个子图的示例。 ? 这些子图是使用下面的代码创建的。我们调用plt.subplot并指定三个数字。它们指的你需要的行数,列数和子图号。...将图例保存到变量L后,你可以使用L.get_text()[0]调用图例的第一项,并手动将文本设置为您想要的内容。在下面的示例中,我将我的图例设置为’line123’。

    10.8K31

    用python的matplotlib和numpy库绘制股票K线均线和成交量的整合效果(含量化验证交易策略代码)用python的matplotlib和numpy库绘制股票K线均线的整合效果(含从网络接口

    在用python的matplotlib和numpy库绘制股票K线均线的整合效果(含从网络接口爬取数据和验证交易策略代码)一文里,我讲述了通过爬虫接口得到股票数据并绘制出K线均线图形的方式,在本文里...2 引入成交量 在K线和均线整合成交量的效果图里,出于美观的考虑,我们对整合的效果提出了如下三点要求。 第一,绘制上下两个子图,上图放K线和均线,下图放成交量效果。...第二,上下两个子图共享x轴,也就是说,两者x轴的刻度标签和间隔应该是一样的。 第三,通过柱状图来绘制成交量图,如果当天股票上涨,成交量图是红色,下跌则是绿色。...在第13行的isLessThanPer方法里,我们判断了跌幅是否超过per指定的范围。由于这两个功能经常会用到,所以我们把它们封装成函数。...关于转载有如下的说明。 1 本文文字和代码均属原创,可转载,但谢绝用于商业用户。 2 转载时请用链接的方式,给出原文出处,同时写明原作者是hsm_computer。

    2.7K21

    使用Python进行描述性统计

    柱状图和饼形图是对定性数据进行频数分析的常用工具,使用前需将每一类的频数计算出来。直方图和累积曲线是对定量数据进行频数分析的常用工具,直方图对应密度函数而累积曲线对应分布函数。...)   柱状图是以柱的高度来指代某种类型的频数,使用Matplotlib对成绩这一定性变量绘制柱状图的代码如下: 1 from matplotlib import pyplot 2 3 #绘制柱状图...:   而饼形图是以扇形的面积来指代某种类型的频率,使用Matplotlib对成绩这一定性变量绘制饼形图的代码如下: 1 from matplotlib import pyplot 2 3 #绘制饼形图...,由于身高变量是属于服从正态分布的,从绘制出来的直方图上也可以直观地看出来:   使用Matplotlib对身高这一定量变量绘制累积曲线的代码如下: 1 from matplotlib import...使用Matplotlib绘制关于身高的箱形图的代码如下: 1 from matplotlib import pyplot 2 3 #绘制箱形图 4 def drawBox(heights): 5 #创建箱形图

    2.6K70

    使用Python进行描述性统计

    柱状图和饼形图是对定性数据进行频数分析的常用工具,使用前需将每一类的频数计算出来。直方图和累积曲线是对定量数据进行频数分析的常用工具,直方图对应密度函数而累积曲线对应分布函数。...而饼形图是以扇形的面积来指代某种类型的频率,使用Matplotlib对成绩这一定性变量绘制饼形图的代码如下: ?...使用Matplotlib对身高这一定量变量绘制直方图的代码如下: ?...使用Matplotlib对身高这一定量变量绘制累积曲线的代码如下: 1 from matplotlib import pyplot 2 3 #绘制累积曲线 4 def drawCumulativeHist...使用Matplotlib绘制关于身高的箱形图的代码如下: 1 from matplotlib import pyplot 2 3 #绘制箱形图 4 def drawBox(heights):

    3.1K52

    关于python中带下划线的变量和函数的意义

    前带两个_ ,后带两个_ 的函数: 标明是特殊函数 if __name__ == '__main__':(Python 用下划线作为变量前缀和后缀指定特殊变量。...私有变量 : 小写和一个前导下划线_private_valuePython 中不存在私有变量一说,若是遇到需要保护的变量,使用小写和一个前导下划线。...内置变量 : 小写,两个前导下划线和两个后置下划线__class__两个前导下划线会导致变量在解释期间被更名。这是为了避免内置变量和其他变量产生冲突。用户定义的变量要严格避免这种风格。以免导致混乱。...2 函数和方法总体而言应该使用,小写和下划线。但有些比较老的库使用的是混合大小写,即首单词小写,之后每个单词第一个字母大写,其余小写。但现在,小写和下划线已成为规范。...同时也应该注意一般函数不要使用两个前导下划线(当遇到两个前导下划线时,Python 的名称改编特性将发挥作用)。特殊函数后面会提及。

    11.1K42

    数据科学:是时候该用seaborn画图了

    让coder专注于可视化分析,提供更多高级接口,无需将过多时间用于数据处理和图表装饰,一般而言,它主要有以下功能: 计算多变量间关系的面向数据集接口 可视化类别变量的观测与统计 可视化单变量或多变量分布并与其子数据集比较...安装Seaborn 安装最新版本的Seaborn非常简单,使用pip命令即可: pip install seaborn Python版本:3.6.x Seaborn的依赖库有:numpy、scipy、...()和scatter()函数 lineplot()和scatter()分别用于绘制线图和散点图,前面说过relplot()函数已经覆盖这两个绘图功能,所以就不赘述了,有意者可以自研。...箱线图的绘制方法是: 先找出一组数据的最大值、最小值、中位数和两个四分位数; 然后, 连接两个四分位数画出箱子; 再将最大值和最小值与箱子相连接,中位数在箱子中间。...总结 本介绍了Seaborn安装、风格配置以及各类绘图函数的使用,当然这里只是列举了小部分函数和功能,抛砖引玉,为展示seaborn的强大之处。希望Seaborn能成为大家数据科学路上的得力助手!

    1.3K20

    【matplotlib】1-使用函数绘制图表

    文章目录 使用函数绘制图表 1.绘制matplotlib图表组成元素的主要函数 2.准备数据 3.函数用法 3.1函数plot()--展现变量的趋势变化 3.2函数scatter()--寻找变量之间的关系...函数title()--添加图形内容的标题 3.11 函数legend()--标识不同图形的文本标签图例 函数综合应用 使用函数绘制图表 1.绘制matplotlib图表组成元素的主要函数 在一个图形输出窗口中...2.准备数据 我们可以导入第三方包NumPy和快速绘图模块pyplot,matplotlib库就是建立在科学计算包NumPy基础之上的Python绘图库。...: 上面的函数功能,调用签名和参数说明同样可以平移到函数ylim()上 import matplotlib.pyplot as plt import numpy as np x = np.linspace...水平参考线的出发点 c: 参考线的线条颜色 ls: 参考线的线条风格 lw: 参考线的线条宽度 平移性: 上面的函数功能,调用签名和参数说明同样可以平移到函数axvline()上 import matplotlib.pyplot

    1.3K30

    5种方法教你用Python玩转histogram直方图

    本篇博主将要总结一下使用Python绘制直方图的所有方法,大致可分为三大类(详细划分是五类,参照文末总结): 纯Python实现直方图,不使用任何第三方库 使用Numpy来创建直方图总结数据 使用matplotlib...使用Numpy实现histogram 以上是使用纯Python来完成的简单直方图,但是从数学意义上来看,直方图是分箱到频数的一种映射,它可以用来估计变量的概率密度函数的。...恰巧,Numpy的直方图方法就可以做到这点,不仅仅如此,它也是后面将要提到的matplotlib和pandas使用的基础。 举个例子,来看一组从拉普拉斯分布上提取出来的浮点型样本数据。...绘制核密度估计(KDE) KDE(Kernel density estimation)是核密度估计的意思,它用来估计随机变量的概率密度函数,可以将数据变得更平缓。...对于直方图而言,Seaborn有 distplot() 方法,可以将单变量分布的直方图和kde同时绘制出来,而且使用及其方便,下面是实现代码(以上面生成的d为例): import seaborn as

    4.3K10

    Python中得可视化:使用Seaborn绘制常用图表

    可视化是Seaborn的核心部分,可以帮助探索和理解数据。 要了解Seaborn,就必须熟悉Numpy和Matplotlib以及pandas。...Seaborn提供以下功能: 面向数据集的API来确定变量之间的关系。 线性回归曲线的自动计算和绘制。 它支持对多图像的高级抽象绘制。 可视化单变量和双变量分布。...但是,如果我们必须推断两个数字列之间的关系,比如“评级和大小”或“评级和评论”,会怎么样呢? 当我们想要绘制数据集中任意两个数值列之间的关系时,可以使用散点图。...此图是机器学习领域的最强大的可视化工具。 让我们看看数据集评级和大小中的两个数字列的散点图是什么样子的。首先,我们将使用matplotlib绘制图,然后我们将看到它在seaborn中的样子。...使用Seaborn的配对图 对于非对角视图,图像是两个数值变量之间的散点图 对于对角线视图,它绘制一个柱状图,因为两个轴(x,y)是相同的。 5.热力图 热图以二维形式表示数据。

    6.7K30

    《python数据分析与挖掘实战》笔记第3章

    当然,众数一般用于离散型变量而非连续型变量。 2.离中趋势度量 (1)极差 极差=最大值一最小值 极差对数据集的极端值非常敏感,并且忽略了位于最大值与最小值之间的数据的分布 情况。...直接绘制散点图 判断两个变量是否具有线性相关关系的最直观的方法是直接绘制散点图,如图3-11所示。 ? 2....其 中,Pandas提供了大量的与数据探索相关的函数,这些数据探索函数可大致分为统计特征函数与统计作图函数,而作图函数依赖于Matplotlib,所以往往又会跟Matplotlib结合在一起使用。...使用格式: plt.plot(x, y, S) 这是Matplotlib通用的绘图方式,绘制对于x (即以x为横轴的二维图形),字符串参量S指定绘制时图形的类型、样式和颜色,常用的选项有:'b’为蓝色、...(2) pie 功能:绘制饼型图。 使用格式:plt.pie(size) 使用Matplotlib绘制饼图,其中size是一个列表,记录各个扇形的比例。

    2.2K20

    五分钟入门数据可视化

    多变量可视化视图: 可以让一张图同时查看两个以上的变量,比如“身高”和“年龄”,你可以理解是同一个人的两个参数,这样在同一张图中可以看到每个人的“身高”和“年龄”的取值,从而分析出这两个变量之前是否存在某种联系...针对离散变量我们可以使用常见的条形图和饼图完成数据的可视化工作,那么,针对数值型变量,我们也有很多可视化的方法,例如箱线图、直方图、折线图、面积图、散点图等等。...箱线图,又称盒式图,由五个数值点组成:最大值 (max)、最小值 (min)、中位数 (median) 和上下四分位数 (Q3, Q1)。...在 Matplotlib 中,我们使用 plt.boxplot(x, labels=None) 函数,其中参数 x 代表要绘制箱线图的数据,labels 是缺省值,可以为箱线图添加标签。...在 Matplotlib 中,我们使用 plt.pie(x, labels=None) 函数,其中参数 x 代表要绘制饼图的数据,labels 是缺省值,可以为饼图添加标签。

    2.7K30

    matplotlib绘图第一步

    (100) matplotlib组成元素函数的用法 函数plot-展示变量的变化趋势 ls:线条风格 有四个参数值:'-','--','-.',':' lw:线条宽度 label:标记图形内容胡标签文本...函数xlim-设置x轴的数值显示范围 xmin:最小值 xmax:最大值 import matplotlib.pyplot as pltimport numpy as np x = np.linspace...函数grid()-绘制刻度线的网格线 ls:网格的线条风格 c:网格线的线条颜色 import matplotlib.pyplot as pltimport numpy as np x = np.linspace...函数axhline()-绘制平行于x轴的水平参考线 c:颜色 ls线条风格 lw线条宽度 import matplotlib.pyplot as pltimport numpy as np x = np.linspace...函数axvhpan()-绘制平行于x轴的参考区域 xmin:起始位置 xmax:终止数据 facecolor:区域的填充颜色 alpha:透明度 import matplotlib.pyplot as

    61510

    5种方法教你用Python玩转histogram直方图

    本篇博主将要总结一下使用Python绘制直方图的所有方法,大致可分为三大类(详细划分是五类,参照文末总结): 纯Python实现直方图,不使用任何第三方库 使用Numpy来创建直方图总结数据 使用matplotlib...使用Numpy实现histogram 以上是使用纯Python来完成的简单直方图,但是从数学意义上来看,直方图是分箱到频数的一种映射,它可以用来估计变量的概率密度函数的。...恰巧,Numpy的直方图方法就可以做到这点,不仅仅如此,它也是后面将要提到的matplotlib和pandas使用的基础。 举个例子,来看一组从拉普拉斯分布上提取出来的浮点型样本数据。...绘制核密度估计(KDE) KDE(Kernel density estimation)是核密度估计的意思,它用来估计随机变量的概率密度函数,可以将数据变得更平缓。...对于直方图而言,Seaborn有 distplot() 方法,可以将单变量分布的直方图和kde同时绘制出来,而且使用及其方便,下面是实现代码(以上面生成的d为例): import seaborn as

    2K10
    领券