首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用Keras集成卷积神经网络的入门级教程

在统计学和机器学习中,组合使用多种学习算法往往比单独的任何的学习算法更能获得好的预测性能。...与统计力学中的统计集成不同(通常是无穷大),机器学习的集成由具体的有限的替代模型集合构成,但通常在这些备选方案中存在更灵活的结构。...唯一的区别是用步幅为2的卷积层代替最大池层。再次请注意,Conv2D(10, (1, 1))层之后没有立即使用激活函数。如果在该层之后立即使用了ReLU激活函数,模型将无法训练。...论文:https://arxiv.org/abs/1312.4400 我在这里使用1×1内核的卷积层,而不再使用多层感知器内的多层感知器卷积层。...论文中认为,多层感知器网络层的应用功能等价于在常规的卷积层上的cccp层(cascaded cross channel parametric pooling),而后者又等价于具有1×1卷积核的卷积层(如果此处我的解释不正确

1K50

使用Keras构建具有自定义结构和层次图卷积神经网络(GCNN)

如何构建具有自定义结构和层次的神经网络:Keras中的图卷积神经网络(GCNN) 在生活中的某个时刻我们会发现,在Tensorflow Keras中预先定义的层已经不够了!我们想要更多的层!...我们想要建立一个具有创造性结构的自定义神经网络!幸运的是,通过定义自定义层和模型,我们可以在Keras中轻松地执行此任务。...需要指出的是,本教程的范围不是训练CORA数据集上最精确的模型。相反,我们只是想提供一个使用keras自定义层实现自定义模型的示例!...模型1:序列层的神经网络 作为基准,我们使用具有序列层的标准神经网络(熟悉的keras序列模型)。...模型3:具有图卷积层的神经网络 到目前为止,我们已经了解了如何使用Keras Functional API创建自定义网络结构。那如果我们需要使用用户自定义的操作自定义的层呢?

2.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    如何使用Keras集成多个卷积网络并实现共同预测

    GitHub 地址:https://github.com/LawnboyMax/keras_ensemblng 使用集成的主要动机是在发现新的假设,该假设不一定存在于构成模型的假设空间中。...我将使用 Keras,具体来说是它的功能性 API,以从相对知名的论文中重建三种小型 CNN(相较于 ResNet50、Inception 等而言)。...如你所见,这个方法在某种程度上类似于在模型的顶部使用全连接层。可以在这篇论文 [5] 中查看更多关于全局池化层的内容。...相较于在 MLP 卷积层中使用多层感知机,我使用的是 1x1 卷积核的卷积层。...该论文中称,MLP 卷积层中应用的函数等价于在普通卷积层上的级联跨通道参数化池化(cascaded cross channel parametric pooling),其中依次等价于一个 1x1 卷积核的卷积层

    1.4K90

    Tensorflow2.0:使用Keras自定义网络实战

    tensorflow2.0建议使用tf.keras作为构建神经网络的高级API 接下来我就使用tensorflow实现VGG16去训练数据背景介绍: 2012年 AlexNet 在 ImageNet 上显著的降低了分类错误率...在2014年牛津大学机器人实验室尝试构建了更深的网络,文章中称为"VERY DEEP CONVOLUTIONAL NETWORKS",如VGG16,有16层,虽然现在看起来稀疏平常,但与 AlexNet...[在这里插入图片描述] 上图为VGG16的网络结构,我们可以从输入层开始数,数到最终的输出层,正好是16层,有兴趣的可以数一数,接下来我们就来实现这样的一个网络 实现: Stage 1 卷积层1:conv1...,我们可以使用model.summary()的方法查看一下网络结构和相关参数 查看网络结构: [在这里插入图片描述] 训练 1....加载数据 这里为了训练方便,就使用CIFAR10的数据集了,获取该数据集很方便,只需keras.datasets.cifar10.load_data()即可获得 # train data train_date

    41650

    教程 | 如何使用Keras集成多个卷积网络并实现共同预测

    它使用了常见的模式,即每个卷积层连接一个池化层。唯一一个对一些人来说可能不熟悉的细节是其最后的层。...如你所见,这个方法在某种程度上类似于在模型的顶部使用全连接层。可以在这篇论文 [5] 中查看更多关于全局池化层的内容。...相较于在 MLP 卷积层中使用多层感知机,我使用的是 1x1 卷积核的卷积层。...该论文中称,MLP 卷积层中应用的函数等价于在普通卷积层上的级联跨通道参数化池化(cascaded cross channel parametric pooling),其中依次等价于一个 1x1 卷积核的卷积层...它使用了所有模型共享的输入层。在顶部的层中,该集成通过使用 Average() 合并层计算三个模型输出的平均值。

    4.5K70

    深度卷积神经网络CNN中shortcut的使用

    前言               自2012年Alex Krizhevsky利用深度卷积神经网络(CNN)(AlexNet [1])取得ImageNet比赛冠军起,CNN在计算机视觉方面的应用引起了大家广泛地讨论与研究...相邻层之间的关系如下, 001.png 其中H表示网络中的变换。...002.png        为了解决深度网络的梯度发散问题,Highway在两层之间增加了(带权的)shortcut(原文中并没有使用这个名词,为统一起见,采用术语shortcut)。...输入层x是通过C的加权连接到输出层y。通过这种连接方式的改进,缓解了深度网络中的梯度发散问题。Highway networks与plain networks的训练误差对比如图3所示。...026.png        对比highway networks和ResNet,可以看到DenseNet的改进主要在shortcut的使用上,将网络层进行稠密连接,shortcut可以跨越很多层并可以同时存在

    23.7K2418

    深入理解卷积神经网络中的卷积

    卷积神经网络是一种特殊的神经网络结构,是自动驾驶汽车、人脸识别系统等计算机视觉应用的基础,其中基本的矩阵乘法运算被卷积运算取代。它们专门处理具有网格状拓扑结构的数据。...Yann LeCun进一步研究了这个项目,最终在1998年发布了LeNet-5——第一个引入了我们今天在CNN仍然使用的一些基本概念的现代卷积神经网络。...卷积的误称 在CNN中广泛使用的卷积运算是用词不当的。严格地说,所使用的操作是相关,而不是卷积。这两个操作符都有一点不同,我们将分别讨论它们,以理解它们之间的区别。...在卷积运算中,首先将核翻转180度,然后应用于图像。卷积的基本性质是将一个核与一个离散的单位脉冲进行卷积,在脉冲的位置上得到一个核的拷贝。...卷积运算同样遵循平移不变性和局部性的性质。 ? 注意: 尽管这两个操作稍有不同,但是所使用的核是否对称并不重要。 结论: 在这篇文章中,我们简要讨论了卷积神经网络的历史和一些特性。

    1.2K20

    卷积神经网络中的Winograd快速卷积算法

    目录 写在前面 问题定义 一个例子 F(2, 3) 1D winograd 1D to 2D,F(2, 3) to F(2x2, 3x3) 卷积神经网络中的Winograd 总结 参考 博客:blog.shinelee.me...卷积神经网络中的Winograd 要将Winograd应用在卷积神经网络中,还需要回答下面两个问题: 上面我们仅仅是针对一个小的image tile,但是在卷积神经网络中,feature map的尺寸可能很大...在卷积神经网络中,feature map是3维的,卷积核也是3维的,3D的winograd该怎么做?...注意图中的Matrix Multiplication,对应3维卷积中逐channel卷积后的对应位置求和,相当于\((m+r-1)^2\)个矩阵乘积,参与乘积的矩阵尺寸分别为\(\lceil H / m...只适用于较小的卷积核和tile(对大尺寸的卷积核,可使用FFT加速),在目前流行的网络中,小尺寸卷积核是主流,典型实现如\(F(6\times 6, 3\times 3)\)、\(F(2\times 2

    2.4K40

    用Keras通过Python进行卷积神经网络的手写数字识别

    使用预测误差来判断结果,只不过是逆分类的准确度。 理想的结果要求达到小于1%的预期错误率。用大型卷积神经网络可以达到约0.2%错误率。...image.png 具有多层结构的基本模型 我们真的需要卷积神经网络这样复杂的模型来实现MNIST识别的良好的效果? 你可以使用带有单个层的非常简单的神经网络模型获得非常棒的效果。...Keras提供了很多创建卷积神经网络的方法。 在本节中,我们将为MNIST创建一个简单的CNN,演示如何使用CNN实现包括卷积图层,合并图层和压缩图层的方法。 第一步是导入所需的类和函数。...卷积神经网络比标准的多层感知器复杂,所以我们从使用所有元素产生理想的结果的简单的结构开始。...如何使用Keras为MNIST创建卷积神经网络模型。 如何开发和评估具有近乎世界一流水平的更大的CNN模型。

    5.9K70

    keras中文文档之:CNN眼中的世界:利用Keras解释CNN的滤波器

    本文有代码; 本文作者:Francois Chollet 使用Keras探索卷积网络的滤波器 本文中我们将利用Keras观察CNN到底在学些什么,它是如何理解我们送入的训练图片的。...我们将使用Keras来对滤波器的激活值进行可视化。本文使用的神经网络是VGG-16,数据集为ImageNet。本文的代码可以在github找到 ?...首先,我们在Keras中定义VGG网络的结构: from keras.models import Sequentialfrom keras.layers import Convolution2D, ZeroPadding2D...这意味着我们可以通过使得卷积滤波器具有旋转不变性而显著减少滤波器的数目,这是一个有趣的研究方向。 令人震惊的是,这种旋转的性质在高层的滤波器中仍然可以被观察到。...其一,神经网络理解了如何将输入空间解耦为分层次的卷积滤波器组。其二,神经网络理解了从一系列滤波器的组合到一系列特定标签的概率映射。

    79420

    keras提供的网络_kubernetes网络

    模块介绍 Inception的架构 GoogleNet的图片 Keras代码实现 为了搭建Inception网络我们使用了以下策略 整个代码的流程如下 实验结果 实验结果分析 本博客相关引用 本博客旨在给经典的...GoogleNet系列网络的概览 InceptionV1,通过把不同尺寸的卷积核如1×1,3×3,5×5进行堆叠增加了网络对不同尺度的适应性。...InceptionV3,在InceptionV3中google将分解的思想用到了极致,把二维卷积核(NxN)拆成两个方向上的一维卷积核(Nx1,1xN)。...在本篇博客中,我们将实现一个类似于InceptionV2的结构,并用VOC2012的数据集进行网络的训练,验证,与测试。为了快速开发,本次我们把Keras作为代码的框架。...比较Inception(3a)和Inception(5b),我们可以看到大卷积核的滤波器的个数的比例已经提高了。

    57820

    理解卷积神经网络中的四种卷积

    在卷积神经网络中,一般情况下,卷积核越大,感受野(receptive field)越大,看到的图片信息越多,所获得的全局特征越好。...在主流的深度学习框架中,如TensorFlow,Pytorch,Keras中的函数名都是conv_transpose。...有大佬一句话总结:转置卷积相对于卷积在神经网络结构的正向和反向传播中做相反的运算。其实还是不是很理解。...; FCN全卷积网络中,由于要对图像进行像素级的分割,需要将图像尺寸还原到原来的大小,类似upsampling的操作,所以需要采用反卷积; GAN对抗式生成网络中,由于需要从输入图像到生成图像,自然需要将提取的特征图还原到和原图同样尺寸的大小...深度可分离卷积 在神经网络中,我们通常使用称为深度可分离卷积的东西。这将执行空间卷积,同时保持通道分离,然后进行深度卷积。

    69550

    在Keras和Tensorflow中使用深度卷积网络生成Meme(表情包)文本

    Keras有一个Tokenizer类,可以使用它(使用char_level = True),这里使用的是自己的util函数,因为它比Keras tokenizer更快。...num_validation_samples] x_val = data[-num_validation_samples:] y_val = labels[-num_validation_samples:] 第3步:模型设计 这里选择使用卷积网络...在研究中,其他人已经成功地使用了3到7种不同组合的卷积大小,大小为5的卷积核通常在文本数据上表现得相当不错。 选择ReLU激活是因为它快速,简单,并且非常适用于各种各样的用例。...从概念上讲,这允许卷积滤波器从更深层中的文本中学习更多抽象模式,因为在每个最大池操作将维度减少2倍之后,宽度5内核将跨越两倍的字符。...确实尝试过使用Keras的multi_gpu_model,但它需要使批量大小更大,以实际实现速度提升,这可能会影响模型的收敛能力,即使使用4个GPU也几乎不会快2倍。

    1K40

    深度学习图像识别项目(中):Keras和卷积神经网络(CNN)

    Keras和卷积神经网络 上篇文章中,我们学习了如何快速构建深度学习图像数据集 ,我们使用该文章中介绍的过程和代码来收集,下载和整理磁盘上的图像。...现在我们已经下载和组织了我们的图像,下一步就是在数据之上训练一个卷积神经网络(CNN)。 我会在今天文章中向你展示如何使用Keras和深入的学习来训练你的CNN。...我们的目标是训练一个使用Keras和深度学习的卷积神经网络来识别和分类这些口袋妖怪。...实施我们的CNN + Keras训练脚本 现在 已经实现了更小的 VGGNet,我们可以使用Keras来训练我们的卷积神经网络。...在处理你自己的数据时请记住这一点。 在下篇文章中,我将展示如何将我们训练的Keras +卷积神经网络模型部署到智能手机!

    9.3K62

    卷积神经网络中的自我注意

    最近我在自己训练的墙体检测的网络中添加了自注意力,这提高了墙分割的dice分数。我写这篇短文是为了总结cnn的自注意力机制,主要是为了以后可以回顾一下我做了什么,但我也希望对你们有用。...其中,C是通道的数量,N是所有其他维度的乘积(稍后我们将看到代码) 对x进行1x1卷积,得到f, g, h。这将改变通道的数量从C到C*: ? ?...计算f(x)和g(x)中像素位置之间的一系列softmax权重: ? 这些权重称为“注意力图”,本质上是量化图像中像素j相对于像素i的“重要性”。...由于这些权重(β)是在特征集的整个高度和宽度上计算的,因此接收场不再局限于小内核的大小。 将自我注意层的输出计算为: ? ? 这里,v是另一个1x1卷积的输出。...此实现与本文中的算法等效,因为学习两个1x1转换层等效于学习一个具有兼容大小的转换层。 结果测试 通过在UNet块中替换conv层,我在UNet体系结构中使用了自注意力层。

    78810

    Python人工智能:使用Keras库实现基于1维卷积神经网络的噪声分类算法

    Python人工智能:使用Keras库实现基于1维卷积神经网络的噪声分类算法 !! ✨ 本文实现基于1DCNN的10种不同噪声类型的分类算法,精度高达99%。...一、噪声数据的获取与预处理 1.1 噪声数据集的获取 (1) 本文使用SPIB开源噪声数据集NoiseX-92中的15种噪声数据进行基于神经网络的噪声分类算法,官方下载下载地址为: Signal Processing...1.2 噪声数据的预处理 使用Python对NoiseX-92噪声数据集进行预处理使用了如下四个python库: !!...✨ 将下面的代码存放到如下图所示的noise_data_pro.py文件中,并将下载的NOISEX-92噪声数据聚集放入到同样的目录下。...的1维卷积神经网络噪声分类算法实现方法 from keras.layers import Dense, Conv1D, BatchNormalization from keras.layers import

    54810

    tensorflow中keras.models()的使用总结

    但,从设计上希望用户只透过TensorFlow来使用,即tf.keras。 所以在此主要记录一下tf.keras.models的使用。...由于Layer提供了集中函数式的调用方式,通过这种调用构建层与层之间的网络模型。 所以其编程特点: 1. 我们构建层,通过layer对象的可调用特性,或者使用apply与call实现链式函数调用。...Sequential类通过Layer的input与output属性来维护层之间的关系,构建网络模型; 其中第一层必须是InputLayer或者Input函数构建的张量; image.png 实例 导入和定义...layer就不再赘述,仅在步骤3、4的有所改变,可直接使用Sequential构建顺序模型,即使用add方法直接添加layer。...hide1_layer, hide2_layer, output_layer]) 之后的训练中不要忘记改变model变量。

    6.5K01

    卷积神经网络的卷积层_卷积神经网络详解

    weight中,并生成一个bias; 上图详细描述了BN层计算原理以及如何融合卷积层和BN层,这里进行验证: 定义三个模型: 定义模型1 : 一层卷积层和一层BN层网络 import numpy as...m.running_mean.data.normal_(0, 1) m.running_var.data.uniform_(1, 2) 定义模型2 : 一个卷积层网络...padding=1, bias=False) def forward(self, x): x = self.conv1(x) return x 定义模型3 : 一层卷积网络...2; 模型3为conv,这里我们合并模型1的卷层和BN层,然后用合并后的参数初始化模型3; 如果计算没问题的话,那么相同输入情况下,模型2输出手动计算BN后,应该和模型1输出一样,模型1的卷积和bn合并后...这里手动计算模型2的卷积过程,然后和模型2输出进行对比。

    1.6K21
    领券