首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

交互式仪表板!Python轻松完成!⛵

图片 本文使用 Kaggle 数据集创建了一个Demo,演示如何使用 Python 调用 ipywidget 模块,快速创建交互式仪表板。...实战数据集下载(百度网盘):公众号『ShowMeAI研究中心』回复『实战』,或者点击 这里 获取本文 [41]ipywidgets:使用Python创建交互式仪表板 『CardioGoodFitness...数据中包含 2 个连续变量,收入 Income 和英里数 Miles。 图片 看板Demo实现:了解Miles的分布 准备工作 ipywidget 模块包含了很多可用的小部件。...在这个演示中,我们将使用下拉框选择类别数据,以便更好地了解里程分布。我们将选择箱线图来绘制每个类别的里程数据。...最简单的自定义是 HBox,它是一个水平布局的选择器,而 VBox 代表一个垂直布局的选择器。下面是 HBox 或 VBox 布局的示例。 图片 图片 下面我们准备输入和输出布局的显示。

1.1K81

交互式仪表板!Python轻松完成

引言在本篇内容中,ShowMeAI将给大家讲解使用 ipywidget 模块创建交互式仪表板。...实战数据集下载(百度网盘):公众号『ShowMeAI研究中心』回复『实战』,或者点击 这里 获取本文 [41]ipywidgets:使用Python创建交互式仪表板 『CardioGoodFitness...数据中包含 2 个连续变量,收入 Income 和英里数 Miles。 看板Demo实现:了解Miles的分布 准备工作ipywidget 模块包含了很多可用的小部件。...在这个演示中,我们将使用下拉框选择类别数据,以便更好地了解里程分布。我们将选择箱线图来绘制每个类别的里程数据。...最简单的自定义是 HBox,它是一个水平布局的选择器,而 VBox 代表一个垂直布局的选择器。下面是 HBox 或 VBox 布局的示例。下面我们准备输入和输出布局的显示。

82310
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Matplotlib也可以渲染出交互式的可视化图表

    交互式图表受到所有人的喜爱,因为它们能够更有效地讲述故事。在数据科学和相关领域也是如此。探索性数据分析是数据预处理管道中的一个重要步骤,在生态系统中有许多可用的库来实现这一点。...matplotlib可以更改使用的后端的创建来交互式图,本文将研究两个这样的后端,以及它们如何使matplotlib在Jupyter 中呈现交互性。...首先我们定义: “前端”是面向用户的代码,即绘图代码,而“后端”则完成所有幕后的工作,例如数据获取,计算等以制作图形。 这意味着交互的先决条件是拥有一个交互式后端。...当启用其他后端时就可以实现交互式图像操作。本文将介绍两个常见的方法,可以在数据可视化任务中使用它们。 nbagg后端 backend_nbagg可以在notebook上呈现交互式图形。...ipyml后端使用ipywidget框架,需要单独安装。ipywidget用于在Jupyter 环境中构建交互式gui。在滑块、文本框等控件的帮助下,用户可以与他们的可视化效果进行无缝交互。

    2.6K20

    如何使用Python和开放数据构建爱丁堡Beergardens的交互式地图

    因此将关于主席许可的开放数据集与一些地理编码相结合,并创建了一个在爱丁堡外部座位的交互式地图。 背景和项目描述 在过去的几年里,英国政府一直致力于开放数据,爱丁堡市议会也不例外。...在https://edinburghopendata.info,可以找到包含有关公共生活的许多方面的信息的数据集列表(事件虽然某些文件可以肯定地进行一些更新)。可以在此处找到最新版本。...快速浏览数据可以发现数据中有一些重复数据。它们主要是由于具有不同开始和结束日期的多个许可。一个好的清理方法是过滤日期,但坦率地说现在不在乎这么多,所以只保留前提名称和地址并删除重复项。...有不同的API,允许查询地址并返回纬度和经度(一个称为地理编码的过程。可能是使用谷歌地图API,但它带有警告.OpenStreetMap API提供相同的功能,但是免费使用的。...在根据房屋名称进行一些额外的数据清理之后,将房屋分为“咖啡店”,“酒吧/餐厅”和“其他”三类,并将它们绘制在交互式地图上,以HTML格式保存并随后转换到png格式。

    1.8K20

    使用sklearn自带的贝叶斯分类器进行文本分类和参数调优

    我们使用和上一篇博客同样的数据,使用sklearn自带的贝叶斯分类器完成文本分类,同时和上一篇文章手写的分类器,进行分类精度、速度、灵活性对比。...4.png Part 3:在真实数据上的实验结果 和上一篇博客一样,我使用相同的数据,我这里使用在康奈尔大学下载的2M影评作为训练数据和测试数据,里面共同、共有1400条,好评和差评各自700...,使用sklearn自带的多项式模型贝叶斯分类器,使用相同的训练集和测试集,结果后者在测试集上的精度达到了79%,比我们原始手写的精度高出将近10%百分点,效果显而易见,并且训练和分类的速度也大大提高。...下面我们使用sklearn自带的伯努利模型分类器进行实验。...,使用伯努利模型的贝叶斯分类器,在文本分类方面的精度相比,差别不大,我们可以针对我们面对的具体问题,进行实验,选择最为合适的分类器。

    2K61

    使用Python和NumPy进行数据分析的实际案例

    今天我要和大家分享一个有趣的实际案例,我们将使用Python和NumPy库进行数据分析。在这个案例中,我们将探索如何分析一家咖啡馆的销售数据,以了解他们的销售趋势和最受欢迎的产品。...打开终端并运行以下命令pip install numpy接下来,我们将使用Python的请求来获取咖啡馆的销售数据。由于目标网站存在反爬机制,因此我们将在请求中设置代理信息。...接下来,我们将使用 NumPy 库来分析数据并回答我们的问题。首先,让我们了解一下星巴克的销售趋势图,了解一下咖啡馆的销售情况。...以下是计算销售高度和低谷的时间段的示例代码:# 提取时间段数据time_periods = np.array(data["time_periods"])# 计算每个时间段的平均销售量period_sales...Python和NumPy库,我们成功地分析了一家咖啡馆的销售数据。

    26020

    使用Hadoop和Spark进行大数据分析的详细教程

    大数据分析是当今信息时代的重要组成部分,而Hadoop和Spark是两个流行的工具,用于处理和分析大规模数据集。...本教程将详细介绍如何使用Hadoop和Spark进行大数据分析,包括数据的存储、处理和分析。步骤1:安装Hadoop首先,确保你的系统中已经安装了Java。...按照官方文档的步骤安装Spark:Spark安装指南步骤5:使用Spark进行数据分析使用Spark编写一个简单的应用程序,读取HDFS中的数据并进行分析。...Hadoop和Spark进行大数据分析。...首先,使用Hadoop进行数据存储和MapReduce分析。然后,使用Spark进行更高效和灵活的数据分析。这只是一个简单的例子,你可以根据需要扩展和定制你的数据分析流程。

    1.5K10

    使用 SQL Server 2008 数据类型-xml 字段类型参数进行数据的批量选取或删除数据

    我们经常有这样的需求,批量的删除或者选取大量的数据,有非常多的Id值,经常使用in条件查询,如果你使用拼接字符串的方式,可能遭遇SQL语句的长度限制4000个字符。可以使用XML的参数类型来解决。...通过使用SQL语句可以直接获取存放再XML字段中的数据的行集,之后可以使用DataSet或DataTable进行数据处理,当需要写入数据到XML字段时,我们可以使用Modify()函数来实现直接更新数据库...不保留属性值前后的单引号和双引号。 不保留命名空间前缀。...可以通过创建架构来对 XML 进行类型化,比如让 xml 内容的 节点下面必须有 节点。...,然后与指定的日期进行比较。若相等则返回 1;若不相等则返回 0;若包含 NULL 则返回 NULL。

    2.4K90

    算法 | 使用sklearn自带的贝叶斯分类器进行文本分类和参数调优

    我们使用和上一篇博客同样的数据,使用sklearn自带的贝叶斯分类器完成文本分类,同时和上一篇文章手写的分类器,进行分类精度、速度、灵活性对比。...Part 2.1: 多项式模型 多项式模型 Part 2.2: 伯努利模型 伯努利模型 Part 2.3: 两个模型的区别 4.png Part 3:在真实数据上的实验结果 和上一篇博客一样,我使用相同的数据...,我这里使用在康奈尔大学下载的2M影评作为训练数据和测试数据,里面共同、共有1400条,好评和差评各自700条,我选择总数的70%作为训练数据,30%作为测试数据,来检测sklearn自带的贝叶斯分类器的分类效果...下面我们使用sklearn自带的伯努利模型分类器进行实验。...,使用伯努利模型的贝叶斯分类器,在文本分类方面的精度相比,差别不大,我们可以针对我们面对的具体问题,进行实验,选择最为合适的分类器。

    96270

    《利用Python进行数据分析·第2版》第9章 绘图和可视化9.1 matplotlib API入门9.2 使用pandas和seaborn绘图9.3 其它的Python可视化工具9.4 总结

    matplotlib和IPython社区进行合作,简化了从IPython shell(包括现在的Jupyter notebook)进行交互式绘图。...学习本章代码案例的最简单方法是在Jupyter notebook进行交互式绘图。...pyplot接口的设计目的就是交互式使用,含有诸如xlim、xticks和xticklabels之类的方法。它们分别控制图表的范围、刻度位置、刻度标签等。...其使用方式有以下两种: 调用时不带参数,则返回当前的参数值(例如,plt.xlim()返回当前的X轴绘图范围)。...我鼓励你探索绘图的生态系统,因为它将持续发展。 9.4 总结 本章的目的是熟悉一些基本的数据可视化操作,使用pandas,matplotlib,和seaborn。

    7.4K90

    使用Python和Geopandas进行地理数据可视化的实用指南

    本文将介绍如何使用Python和Geopandas进行地理数据可视化,并提供实用的代码示例。1. 准备工作在开始之前,确保已经安装了Python和Geopandas库。...数据探索与处理加载数据后,我们可以进行一些基本的探索和处理,例如查看数据的前几行、数据类型等。...交互式地理数据可视化除了静态的地理数据可视化外,还可以使用交互式工具来进行地理数据的探索和展示。Bokeh和Folium是两个常用的Python库,可以实现交互式地理数据可视化。...结论与展望通过本文的介绍和案例演示,我们了解了如何使用Python和Geopandas进行地理数据的分析和可视化。...交互式地理数据可视化:通过Bokeh和Folium等库可以实现交互式地理数据可视化,增强数据探索和展示的交互性。

    64810

    使用TCGAbiolinks进行甲基化和转录组数据的联合分析

    DNA甲基化作为表观遗传的一种重要标记,在基因表达调控中发挥重要作用,已有研究表明,位于启动子区的甲基化会抑制基因表达。结合甲基化数据和基因表达谱数据,可以更好的分析甲基化的调控功能。...通过TCGAbiolinks不仅仅可以对某种类型的数据进行分析,还可以进行多组学数据的联合分析,DNA甲基化和基因表达谱数据的联合分析过程如下 1....在DNA甲基化和基因表达谱的联合分析中,鉴于DNA甲基化抑制基因表达的思想,通常关注二者间为负相关的位点,即甲基化下调而基因上调,甲基化下调基因上调的相关位点。...在上图中,显著差异且存在负相关的位点用圆圈进行了标注。...通过TCGAbiolinks可以轻松实现DNA甲基化和基因表达谱数据的联合分析,美中不足的是它的starburst plot没有采用常用的fold change来绘制。

    3.2K21

    R语言画图时常见问题

    R中的绘图命令可以分为高水平(High level) 、 低水平 (Low level) 和交互式(Interactive)三种绘图命令。...简要地说,高水平绘图命令可以在图形设备上绘制新图;低水平绘图命令将在已经存在图形上添加更多的绘图信息,如点、线、多边形等;使用交互式绘图命令创建的绘图,可以使用如鼠标这类的定点装置来添加或提取绘图信息。...在已有图形上添加信息当然要使用 低水平绘图命令。 4 如何加图例? 绘制图形后,使用 legend函数,help(“legend”) 5 R 如何做双坐标图?...在 R 中可以通过绘图参数 par(new = TRUE)使得绘制第二个绘图 (hight-level plot) 时保留第一个绘图区域,这样两张绘图会重叠在一起,看起来就是双坐标图。...type设置画图的类型(type=”n”表示不画数据);axes设置是否画坐标轴。常用的参数还有:xlim和ylim,xaxt和yaxt。

    4.7K20

    Wolfram解决方案:精算学

    设计用于保险索赔的预测或数据建模工具,立即分析Wolfram|Alpha 和电子表格中的数据,并呈现完全交互式的图表和报告——完整的工作流程。...,并使用Wolfram Player或webMathematica将其部署到其他人 •以您选择的任何方式可视化数据,包括创建交互式绘图 •比较几种保单的可能保费和付款 •使用内置的Nelson-Aalen...» •从各种内置的标准统计图表和图形中进行选择,或创建高度可定制的交互式图表» •访问数兆字节的Wolfram|Alpha的人口统计、经济和地理数据以进行计算,并将其与以所有常见数据格式(包括XML,XLS...、参数估计等的属性和诊断程序» •单变量和多变量数据的描述性统计» •方差单变量分析(ANOVA)和事后检验,用于比较具有相互依赖参数的生存模型的比较» •与Microsoft Excel和Mathematica...Link for Excel集成» •使用内置的传统数学符号进行计算,可以使用标准的精算符号进行扩展 •针对连续或离散时间过程和期限结构的内置符号和数值货币时间价值计算和利率计算,以及Wolfram

    95550

    数据处理思想和程序架构: 对使用的数据进行优先等级排序的缓存

    而且为了给新来的APP腾出位置记录其标识符 还需要把那些长时间不使用的标识符删除掉. 整体思路 用一个buff记录每一条数据....往里存储的时候判读下有没有这条数据 如果有这个数据,就把这个数据提到buff的第一个位置,然后其它数据往后移 如果没有这个数据就把这个数据插到buff的第一个位置,其它数据也往后移 使用 1.我封装好了这个功能...2.使用的一个二维数组进行的缓存 ? 测试刚存储的优先放到缓存的第一个位置(新数据) 1.先存储 6个0字符 再存储6个1字符 ? 2.执行完记录6个0字符,数据存储在缓存的第一个位置 ?...测试刚存储的优先放到缓存的第一个位置(已经存在的数据) 1.测试一下如果再次记录相同的数据,缓存把数据提到第一个位置,其它位置往后移 ?...使用里面的数据 直接调用这个数组就可以,数组的每一行代表存储的每一条数据 ? ? ? 提示: 如果程序存储满了,自动丢弃最后一个位置的数据.

    1.1K10

    Seaborn 基本语法及特点

    Seaborn 在 Matplotlib 的基础上进行了更加高级的封装,用户能够使用极少的代码绘制出拥有丰富统计信息的科研论文配图。...Seaborn 基于 Matplotlib,Matplotlib 中大多数绘图函数的参数都可在 Seaborn 绘图函数中使用,对 Python 的其他库(比如 Numpy/Pandas/Scipy)有很好的支持...) 多子图网格型(multi-plot grids) 关系型图 数据集变量间的相互关系和相互依赖的程度都可以通过统计分析变量间的相关性获知。...绘图风格 set_style() 参数 style 的可选值包括 darkgrid、whitegrid、dark、white 和 ticks,参数 rc 则用于覆盖预设 Seaborn 样式字典中的值的参数映射...下面是 4 种绘图风格的可视化效果: 颜色主题 set_palette() 函数包含多色系、单色系和双色渐变色系 3 类颜色主题,不同颜色主题的显示效果可通过 sns.color_palette ()

    27330

    简述如何使用Androidstudio对文件进行保存和获取文件中的数据

    在 Android Studio 中,可以使用以下方法对文件进行保存和获取文件中的数据: 保存文件: 创建一个 File 对象,指定要保存的文件路径和文件名。...使用 FileOutputStream 类创建一个文件输出流对象。 将需要保存的数据写入文件输出流中。 关闭文件输出流。...使用 FileInputStream 类创建一个文件输入流对象。 创建一个字节数组,用于存储从文件中读取的数据。 使用文件输入流的 read() 方法读取文件中的数据,并将其存储到字节数组中。...System.out.println("文件中的数据:" + data); 需要注意的是,上述代码中的 getFilesDir() 方法用于获取应用程序的内部存储目录,可以根据需要替换为其他存储路径。...这些是在 Android Studio 中保存和获取文件中的数据的基本步骤。

    47910

    最强 Python 数据可视化库,没有之一!

    我们实际使用的则是一个对 plotly 进行封装的库,名叫 cufflinks,它能让你更方便地使用 plotly 和 Pandas 数据表协同工作。...比如,我们可以先用 .pivot() 进行数据透视表分析,然后再生成条形图。 比如统计不同发表渠道中,每篇文章带来的新增粉丝数: 交互式图表带来的好处是,我们可以随意探索数据、拆分子项进行分析。...X 轴 增加第二条 Y 轴,因为两个变量的范围并不一致 把文章标题放在鼠标悬停时显示的标签中 为了显示更多数据,我们可以方便地添加文本注释: (带有文本注释的散点图) 下面的代码中,我们将一个双变量散点图按第三个分类变量进行着色...限于篇幅,有些更棒的图表和范例,只好请大家访问 plotly 和 cufflinks 的官方文档去一一查看咯。 (Plotly 交互式地图,显示了美国国内的风力发电场数据。...在选择一款绘图库的时候,你最需要的几个功能有: 快速探索数据所需的一行代码图表 拆分/研究数据所需的交互式元素 当需要时可以深入细节信息的选项 最终展示前能轻易进行定制 从现在看来,要用 Python

    2K31

    功能强大、文档健全的开源 Python 绘图库 Plotly,手把手教你用!

    我们实际使用的则是一个对 plotly 进行封装的库,名叫 cufflinks,它能让你更方便地使用 plotly 和 Pandas 数据表协同工作。...交互式图表带来的好处是,我们可以随意探索数据、拆分子项进行分析。箱型图能提供大量的信息,但如果你看不到具体数值,你很可能会错过其中的一大部分! ?...(带有文本注释的散点图) 下面的代码中,我们将一个双变量散点图按第三个分类变量进行着色: ? ? 接下来我们要玩点复杂的:对数坐标轴。...限于篇幅,有些更棒的图表和范例,只好请大家访问 plotly 和 cufflinks 的官方文档去一一查看咯。 ? (Plotly 交互式地图,显示了美国国内的风力发电场数据。...在选择一款绘图库的时候,你最需要的几个功能有: 快速探索数据所需的一行代码图表 拆分/研究数据所需的交互式元素 当需要时可以深入细节信息的选项 最终展示前能轻易进行定制 从现在看来,要用 Python

    4.2K52

    Python Plotly交互可视化详解

    我们实际使用的则是一个对 plotly 进行封装的库,名叫 cufflinks,它能让你更方便地使用 plotly 和 Pandas 数据表协同工作。...比如,我们可以先用 .pivot() 进行数据透视表分析,然后再生成条形图。 比如统计不同发表渠道中,每篇文章带来的新增粉丝数: 交互式图表带来的好处是,我们可以随意探索数据、拆分子项进行分析。...X 轴 增加第二条 Y 轴,因为两个变量的范围并不一致 把文章标题放在鼠标悬停时显示的标签中 为了显示更多数据,我们可以方便地添加文本注释: (带有文本注释的散点图) 下面的代码中,我们将一个双变量散点图按第三个分类变量进行着色...限于篇幅,有些更棒的图表和范例,只好请大家访问 plotly 和 cufflinks 的官方文档去一一查看咯。 (Plotly 交互式地图,显示了美国国内的风力发电场数据。...在选择一款绘图库的时候,你最需要的几个功能有: 快速探索数据所需的一行代码图表 拆分/研究数据所需的交互式元素 当需要时可以深入细节信息的选项 最终展示前能轻易进行定制 从现在看来,要用 Python

    63910
    领券