在 PySpark 中,可以使用groupBy()和agg()方法进行数据聚合操作。groupBy()方法用于按一个或多个列对数据进行分组,而agg()方法用于对分组后的数据进行聚合计算。...以下是一个示例代码,展示了如何在 PySpark 中使用groupBy()和agg()进行数据聚合操作:from pyspark.sql import SparkSessionfrom pyspark.sql.functions...按某一列进行分组:使用 groupBy("column_name1") 方法按 column_name1 列对数据进行分组。进行聚合计算:使用 agg() 方法对分组后的数据进行聚合计算。...在这个示例中,我们计算了 column_name2 的平均值、column_name3 的最大值、column_name4 的最小值和 column_name5 的总和。...avg()、max()、min() 和 sum() 是 PySpark 提供的聚合函数。alias() 方法用于给聚合结果列指定别名。显示聚合结果:使用 result.show() 方法显示聚合结果。
本文就将针对pandas中的map()、apply()、applymap()、groupby()、agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们的使用技巧。...其形状没有变化: ? 配合applymap(),可以简洁地完成很多数据处理操作。...注意这里的year、gender列是以索引的形式存在的,想要把它们还原回数据框,使用reset_index(drop=False)即可: ?...3.2 利用agg()进行更灵活的聚合 agg即aggregate,聚合,在pandas中可以利用agg()对Series、DataFrame以及groupby()后的结果进行聚合。...可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字
本文就将针对pandas中的map()、apply()、applymap()、groupby()、agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们的使用技巧。...'].max() 注意这里的year、gender列是以索引的形式存在的,想要把它们还原回数据框,使用reset_index(drop=False)即可: 结合apply() 分组后的结果也可以直接调用...中可以利用agg()对Series、DataFrame以及groupby()后的结果进行聚合。...False) 可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg...()来为聚合后的每一列赋予新的名字: data.groupby(['year','gender']).agg( min_count=pd.NamedAgg(column='count', aggfunc
分割对象的方法有多种: obj.groupby('key') obj.groupby(['key1','key2']) obj.groupby(key,axis=1) 现在让我们看看如何将分组对象应用于...对象标签名称与组名称相同,看下面的例子就清楚了 2.4 选取某一个分组 使用get_group()方法,我们可以选择一个组。...3.1 常见的是通过agg方法来实现aggregation grouped = df.groupby('Year') print(grouped['Points'].agg(np.mean)) Year...size()函数 grouped = df.groupby('Team') print(grouped.agg(np.size)) Rank Year Points Team...,该对象的索引大小与正在分组的对象的大小相同。
groupby()、agg()等方法展开详细介绍,并结合实际例子帮助大家更好地理解它们的使用技巧(本文使用到的所有代码及数据均保存在我的github仓库:https://github.com/CNFeffery...3.1 利用groupby()进行分组 要进行分组运算第一步当然就是分组,在pandas中对数据框进行分组使用到groupby()方法,其主要使用到的参数为by,这个参数用于传入分组依据的变量名称,...注意这里的year、gender列是以索引的形式存在的,想要把它们还原回数据框,使用reset_index(drop=False)即可: ?...3.2 利用agg()进行更灵活的聚合 agg即aggregate,聚合,在pandas中可以利用agg()对Series、DataFrame以及groupby()后的结果进行聚合,其传入的参数为字典...可以注意到虽然我们使用reset_index()将索引列还原回变量,但聚合结果的列名变成红色框中奇怪的样子,而在pandas 0.25.0以及之后的版本中,可以使用pd.NamedAgg()来为聚合后的每一列赋予新的名字
方法 groupby对象有一些缺点: 无法同时使用多个函数 无法对特定的列使用特定的聚合函数 无法使用自定义的聚合函数 无法直接对结果的列名在聚合前进行自定义命名 可以通过agg函数解决这些问题: 当使用多个聚合函数时...,其中字典以列名为键,以聚合字符串或字符串列表为值 gb.agg({'Height':['mean','max'], 'Weight':'count'}) 使用自定义函数 在agg中可以使用具体的自定义函数...transform方法,被调用的自定义函数,其传入值为数据源的序列其传入值为数据源的序列,与agg的传入类型是一致的,其最后的返回结果是行列索引与数据源一致的DataFrame。...my_zscore) transform其实就是对每一组的每个元素与mean(聚合值)值进行计算,列数与原来一样: 可以看出条目数没有发生变化: 对身高和体重进行分组标准化,即减去组均值后除以组的标准差... Series ,索引与 agg 的结果一致 gb = df.groupby(['Gender','Test_Number'])[['Height','Weight']] gb.apply(lambda
loc函数按标签值进行提取iloc按位置进行提取ix可以同时按标签和位置进行提取 具体的使用见下: df.loc[3]按索引提取单行的数值df.iloc[0:5]按索引提取区域行数据值df.reset_index...()重设索引df=df.set_index(‘date’)设置 date 为索引df[:‘2013’]提取 2013 之前的所有数据df.iloc[:3,:2]从 0 位置开始,前三行,前两列,这里的数据不同去是索引的标签名称...主要使用 groupby 和 pivote_table 进行处理。...= df.groupby('Country').agg(['min', 'mean', 'max']) print(df_agg) 对分组后的部分列进行聚合 import pandas as pd...).round(1).head() 对于聚合后的数据表格,是多级索引,可以重新定义索引的数据 import pandas as pd df = pd.DataFrame({'Country': ['China
删除列层次化索引 用pandas利用df.groupby.agg() 做聚合运算时遇到一个问题:产生了列方向上的两级索引,且需要删除一级索引。...且apply会将当前分组后的数据一起传入,可以返回多维数据。...构造groupby.agg()所使用的方法 2.1 列表模糊查找,找到包含'termid_'的字段名 termid_features = [x for i,x in enumerate(student_termid_onehot.columns.tolist...每个学生每天的终端使用次数明细表 find_termid_df = student_termid_onehot.groupby(['outid','date']).agg(agg_methods...总结 列层次索引的删除 列表的模糊查找方式 查找dict的value值最大的key 的方式 当做简单的聚合操作(max,min,unique等),可以使用agg(),在做复杂的聚合操作时,一定使用apply
最后执行的是having表示分组后的筛选,在pandas中,通过上图可以发现我们得到了一个df1对象,针对这个df1对象,我们再做一次筛选,也表示分组后的筛选。...2)原理说明 split:按照指定规则分组,由groupby实现; apply:针对每个小组,使用函数进行操作,得到结果,由agg()函数实现; combine:将每一组得到的结果,汇总起来,得到最终结果...4)groupby()分组参数的4种形式 使用groupby进行分组时,分组的参数可以是如下的形式: * 单字段分组:根据df中的某个字段进行分组。...* 自定义函数:接受索引,索引相同的记录,会分为一组。...04 agg()聚合操作的相关说明 当使用了groupby()分组的时候,得到的就是一个分组对象。当没有使用groupby()分组的时候,整张表可以看成是一个组,也相当于是一个分组对象。
as_index:表示聚合后新数据的索引是否为分组标签的索引,默认为True。 sort:表示是否对分组索引进行排序,默认为True。...定义求极差的函数 def my_range(arr): return arr.max()-arr.min() groupby_obj.agg(my_range) # 使用agg()方法聚合分组数据...输出为: 指定列聚合 # 使用agg()方法聚合分组中指定列的数据 groupby_obj.agg({'a':'max', 'c':'sum', 'e': my_range}) 输出为:...在使用agg方法中,还经常使用重置索引+重命名的方式: # 初始化分组DF import pandas as pd df_obj = pd.DataFrame({'a': [0, 1, 2, 3, 4...(by='f').agg({'a':'count'}) 输出为: 会发现,经过agg聚合后,分组键做了索引,聚合之后的a列的列名为a,这个列名会与原有的列名冲突,换成a_count比较合适,方法如下
三、查找最大值(最小值)的索引 如果我们要查找每个组的最大值或最小值的索引时,有一个方便的功能可以直接使用。...之后重置索引 很多时候,我们在groupby处理后还要进行其他操作。...groupby还有一个超级棒的用法就是和聚合函数agg连起来使用。...上面的多级索引看起来有点不太友好,我想把每个列下面的统计量和列名分别合并起来。可以使用NamedAgg来完成列的命名。 >>> iris_gb.agg( ......iris_gb.agg(lambda x: x.mean()) 以上就是使用groupby过程中可能会用到的8个操作,如果你熟练使用起来会发现这个功能是真的很强大。
其中: split:按照某一原则(groupby字段)进行拆分,相同属性分为一组 apply:对拆分后的各组执行相应的转换操作 combine:输出汇总转换后的各组结果 02 分组(split)...示例数据 单列作为分组字段,不设置索引 ? 单列字段的转换格式作为分组字段 ? 字典,根据索引对记录进行映射分组 ? 函数,根据函数对索引的执行结果进行分组 ?...的每个元素(标量);面向dataframe对象,apply函数的处理粒度是dataframe的一行或一列(series对象);而现在面向groupby后的group对象,其处理粒度则是一个分组(dataframe...transform,又一个强大的groupby利器,其与agg和apply的区别相当于SQL中窗口函数和分组聚合的区别:transform并不对数据进行聚合输出,而只是对每一行记录提供了相应聚合结果;而后两者则是聚合后的分组输出...另外,还可将groupby与resample链式使用,但仅可以是resample在groupby之后,反之则会报错。例如: ?
DataFrame 分组时,用于指定使用哪一级索引进行分组 as_index:是否把分组键(就是分组的标准)作为分组后的组索引,默认为True sort:分组后是否按分组键的顺序对分组结果进行排序,默认为...filter、transform和apply函数的使用 (一)agg函数的用法 agg(等价于aggregation)函数的用法:对各组应用特定的聚合函数 以下三种写法等价: df.groupby('team...此时agg的参数是列表,计算结果会产生多级的列索引,并且索引名一般用列表中的函数名(或与之相关)。...df.groupby('team').agg([np.max,np.min]) # 结果中的amax表示np.array中的max 不想使用自动提供的列名,而希望自定义列名,可以把agg参数中的列表元素改成元组...元组的第1个元素是自定义的列名(作为第2级列索引出现),第2个元素是函数名,给出了要对分组后的该列数据所做的运算。
# 按照AIRLINE分组,使用agg方法,传入要聚合的列和聚合函数 In[3]: flights.groupby('AIRLINE').agg({'ARR_DELAY':'mean'}).head(...) Out[3]: # 或者要选取的列使用索引,聚合函数作为字符串传入agg In[4]: flights.groupby('AIRLINE')['ARR_DELAY'].agg('mean').head...更多 # Pandas默认会在分组运算后,将所有分组的列放在索引中,as_index设为False可以避免这么做。...分组后使用reset_index,也可以达到同样的效果 In[20]: flights.groupby(['AIRLINE'], as_index=False)['DIST'].agg('mean')...更多 # 自定义一个返回DataFrame的函数,使用NumPy的函数average计算加权平均值,使用SciPy的gmean和hmean计算几何和调和平均值 In[82]: from scipy.stats
US 239 250 217 In [155]: transformed = grouped.transform(lambda x: x.fillna(x.mean())) 我们可以验证转换后数据中组均值未发生变化...US 239 250 217 In [155]: transformed = grouped.transform(lambda x: x.fillna(x.mean())) 我们可以验证转换后的数据中组平均值未发生变化...使用group_keys控制分组列的放置 要控制是否在索引中包含分组列,可以使用默认为True的group_keys参数。...当存在具有相同名称的列和索引时,您可以使用key按列分组,使用level按索引分组。...当列和索引具有相同的名称时,您可以使用key按列进行分组,并使用level按索引进行分组。
假设我们有一个包含学生信息的CSV文件,我们可以使用以下代码将其加载到DataFrame中: df = pd.read_csv('student_data.csv') 在加载数据后,我们可以使用pandas...关键技术: df.groupby(col1)[col2]或者df[col2].groupby(col1),两者含义相同,返回按列col1进行分组后,col2的值。...关键技术: groupby函数和agg函数的联用。在我们用pandas对数据进 行分组聚合的实际操作中,很多时候会同时使用groupby函数和agg函数。...,'mean']} df.groupby('Country').agg(df_age) 在我们对数据进行聚合的过程中,除了使用sum()、max ()等系统自带的聚合函数之外,大家也可以使用自己定义的函数...具体的办法是向agg传入一个从列名映射到函数的字典: 只有将多个函数应用到至少一列时,DataFrame才会拥有层次化的列 2.3.返回不含行索引的聚合数据 到目前为止,所有例中的聚合数据都有由唯一的分组键组成的索引
1. pd.iterrows()函数 iterrows() 是在DataFrame中的行进行迭代的一个生成器,它返回每行的索引及一个包含行本身的对象。...所以,当我们在需要遍历行数据的时候,就可以使用 iterrows()方法实现了。..."""agg方法实现聚合, 相比于apply,可以同时传入多个统计函数""" # 针对同一列使用不同的统计方法 grouped = df.groupby('Year', as_index=False...) # 这个as_index属性,如果是False,就是SQL风格的统计输出,如果是True,默认第一列变成了索引 print(grouped['Points'].agg({'mean':np.mean, 'std':np.std, 'max':np.max})) # 针对不同的列使用不同的统计方法 print(grouped.agg({<!
数据 分组 聚合 运算 聚合 ‘ 飞行综合 flights = pd.read_csv('data/flights.csv') 1 显示部分数据 2 按照AIRLINE分组, 使用agg方法, 传入要聚合的列和聚合函数...flights.groupby('AIRLINE').agg({'ARR_DELAY':'mean'}).head() 3 或者要选取的列使用索引, 聚合函数作为字符串传入agg flights.groupby...('AIRLINE')['ARR_DELAY'].agg('mean').head() 4 每家航空公司每周平均每天取消的航班数 flights.groupby(['AIRLINE', 'WEEKDAY...6 # 用列表和嵌套字典对多列分组和聚合 # 对于每条航线, 找到总航班数, 取消的数量和比例,飞行时间的平均时间和方差 group_cols = ['ORG_AIR', 'DEST_AIR'] agg_dict...).agg(agg_dict).head() 7 # 按'AIRLINE', 'WEEKDAY'分组, 分别对DIST和ARR_DELAY聚合 airline_info = flights.groupby
回到我们定义的convert_df()方法上来,如果某一列百分之50以上的值都是独一无二的(unique),它可以自动地把列的类型转换为类别变量。 让我们看看数据都发生了什么神奇变化吧!...(创建多重索引的时间10秒)+(查询的时间459us) 所以,如果你只使用一次数据(当然这种情况很少见),请使用query查询方式, 否则使用索引方式,因为一旦我们有了多重索引,通过索引获取数据相当高效...该方法也可以接受任意函数(functions),在0.25版本的pandas中,新增了新的使用agg的方式: #使用sort_values函数和head 函数 排序并得到前10名 (df .groupby...nlargest 函数得到新列suicides_sum的前10名 (df .groupby(['country', 'year']) .agg({'suicides_per_100k': 'sum'...mi_df.loc[('Switzerland', 2000)] 可以看到,上面数据的行索引是性别、年龄,将性别展开(unstack)后,选择自杀数 和人口数这两列,得到如下,以前性别作为行索引
领取专属 10元无门槛券
手把手带您无忧上云