df.apply(pd.Series.value_counts) # 查看DataFrame对象中每一列的唯一值和计数
df.isnull().any() # 查看是否有缺失值
df[df[column_name...降序排列数据
df.groupby(col) # 返回一个按列col进行分组的Groupby对象
df.groupby([col1,col2]) # 返回一个按多列进行分组的Groupby对象
df.groupby...(col1)[col2].agg(mean) # 返回按列col1进行分组后,列col2的均值,agg可以接受列表参数,agg([len,np.mean])
df.pivot_table(index=col1..., values=[col2,col3], aggfunc={col2:max,col3:[ma,min]}) # 创建一个按列col1进行分组,计算col2的最大值和col3的最大值、最小值的数据透视表...df.groupby(col1).agg(np.mean) # 返回按列col1分组的所有列的均值,支持df.groupby(col1).col2.agg(['min','max'])
data.apply