首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用Python创建3D EEG地形图

是一种将脑电图(EEG)数据可视化为三维地形图的方法。这种可视化方法可以帮助研究人员更直观地理解和分析EEG数据。

在Python中,可以使用一些库和工具来创建3D EEG地形图,如下所示:

  1. NumPy:用于处理和操作数值数据的库。
  2. Matplotlib:用于绘制图表和可视化数据的库。
  3. MNE(MNE-Python):用于处理和分析脑电图数据的库。
  4. Mayavi:用于创建复杂的3D可视化效果的库。

以下是一个基本的步骤指南,用于使用Python创建3D EEG地形图:

  1. 导入所需的库和模块:
代码语言:txt
复制
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import mne
from mayavi import mlab
  1. 加载EEG数据:
代码语言:txt
复制
# 使用MNE库加载EEG数据
raw = mne.io.read_raw_eeglab('eeg_data.set')
  1. 预处理EEG数据:
代码语言:txt
复制
# 进行必要的预处理步骤,如滤波、去除噪声等
raw.filter(1, 40)
  1. 提取EEG数据的拓扑信息:
代码语言:txt
复制
# 使用MNE库提取EEG数据的通道位置信息
montage = mne.channels.make_standard_montage('standard_1005')
raw.set_montage(montage)
  1. 创建3D地形图:
代码语言:txt
复制
# 提取EEG数据的拓扑信息
pos = mne.channels.layout._auto_topomap_coords(raw.info)

# 创建3D地形图
fig = mlab.figure(size=(800, 600), bgcolor=(1, 1, 1))
mlab.clf()

# 绘制3D地形图
mlab.triangular_mesh(pos[:, 0], pos[:, 1], pos[:, 2], raw.get_data()[0], colormap='jet')

# 设置坐标轴标签和标题
mlab.xlabel('X')
mlab.ylabel('Y')
mlab.zlabel('Z')
mlab.title('3D EEG Topography')

# 显示3D地形图
mlab.show()

这是一个简单的示例,用于创建3D EEG地形图。根据实际需求,可以根据数据的特点和要求进行进一步的定制和优化。

腾讯云相关产品和产品介绍链接地址:

  • 腾讯云产品:https://cloud.tencent.com/product
  • 腾讯云云服务器(CVM):https://cloud.tencent.com/product/cvm
  • 腾讯云云数据库 MySQL 版:https://cloud.tencent.com/product/cdb_mysql
  • 腾讯云人工智能:https://cloud.tencent.com/product/ai
  • 腾讯云物联网平台:https://cloud.tencent.com/product/iotexplorer
  • 腾讯云移动开发:https://cloud.tencent.com/product/mobile
  • 腾讯云对象存储(COS):https://cloud.tencent.com/product/cos
  • 腾讯云区块链服务:https://cloud.tencent.com/product/tbaas
  • 腾讯云元宇宙:https://cloud.tencent.com/product/tencent-metaverse
页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 长文解读|深度学习+EEG时频空特征用于跨任务的心理负荷量评估

    心理负荷量显著影响特定任务中的人员绩效。适当的心理负荷量可以提高工作效率。但是,沉重的脑力劳动会降低人类的记忆力,反应能力和操作能力。由于某些职业的脑力劳动量很大,例如飞行员,士兵,机组人员和外科医生,沉重的脑力劳动会导致严重的后果。因此,心理负荷量评估仍然是一个重要的课题。 近年来,基于脑电图的脑力负荷评估取得了重要成就。但是,出色的结果通常集中于在同一天完成单一心理任务的单个被试。这些方法在实验室外的效果不佳。要达到好的效果,必须克服三个问题,即跨被试,跨日期和跨任务问题。所谓的跨任务问题就是算法可以在不同的实验范式中评估心理负荷量。跨任务的心理负荷量评估,难点在于找到可以推广到各种心理任务的高鲁棒性的EEG特征。特征集通常使用两种方法生成:手工设计特征和通过深度学习提取特征。 最常用的手工设计特征是从5个频段(δ[1-3 Hz],θ[5-8 Hz],α[9-12 Hz],β[14-31 Hz]和γ[33-42 Hz])和2个扩展频带(γ1 [33-57 Hz]和γ2 [63-99 Hz])中提取的功率谱密度(PSD)特征。事件相关电位(ERP)和事件相关同步/去同步(ERS/ ERD)也广泛用于对EEG信号进行分类。 但是,这些手工设计的特征对于跨任务问题未取得可使用的结果。原因除了设计的特征不适合之外,各种任务下的心理负荷量级别的定义也可能导致误导分类结果,心理负荷量状况的标签可能被主观地和错误地定义。 近期,来自清华大学精密仪器系精密测量技术与仪器国家重点实验室的研究团队在IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING杂志发表题目为《Learning Spatial–Spectral–Temporal EEG Features With Recurrent 3D Convolutional Neural Networks for Cross-Task Mental Workload Assessment》研究论文,其设计了两种不同类型的心理负荷量实验,通过行为数据验证了实验的有效性,并提出了一个基于深度循环神经网络(RNN)和3D卷积神经网络的级联网络结构(R3DCNN),以在没有先验知识的情况下学习跨任务的脑电特征。

    00

    journal of neuroscience:面孔的神经表征与眼动模式相协调

    眼球运动是人类视觉功能如何完成的一个信号。近期大量的研究持续验证了在面孔识别过程中特征视觉采样的策略。然而这些个体差异是否反映在特殊的神经差异上目前尚没有研究报告。为探讨该问题本研究首先记录了观察者在面孔再认过程中的眼动数据;其次通过EEG数据获得了他们的面孔辨别神经反应 (neural face discrimination response)。实验结果发现在面孔再认阶段,注视点固定时间更长的面部特征诱发的面部辨别神经反应更大。该模式在不同的被试中 (eye lookers vs.mouth lookers) 同样被发现,且在注视点首次固定在兴趣位置时这种模式就会出现。本研究表明,眼球运动在视觉处理过程中起着重要的作用,可以为神经系统提供判断特定观察者的判断信息,并且面孔身份的有效处理涉及特质,而不是整个面孔。该研究由来自瑞士的Stacchi, Ramon, Leo和Caldara 完成,发表在杂志the journal of neuroscience上。

    01

    EEG/ERP研究中使用头皮表面拉普拉斯算法的问题和考虑

    尽管表面拉普拉斯算法可能抵消的容积传导和对表面电位数据记录参考的不利影响,电生理学学科一直不愿采用这种方法进行数据分析。这种顾虑的原因是多方面的,往往涉及到对潜在转换性质的不熟悉、感知到的数学复杂性的威胁,以及对信号损失、密集电极排列需求或噪声敏感性的担忧。我们回顾了容积传导和允许任意选择脑电参考所引起的缺陷,以一种直观的方式描述了表面拉普拉斯变换的基本原理,并举例说明了常见参考模式(鼻子、连接乳突、平均)和用于频繁测量的EEG频谱(theta, alpha)以及标准ERP成分(如N1或P3)的表面拉普拉斯转换之间的差异。我们特别回顾了表面拉普拉斯算法普遍应用中的一些常见的局限,这些局限可以通过适当选择样条弹性参数和正则化常数进行球面样条内插来有效地解决。我们从实用主义的角度认为,这些局限不仅是没有根据的,而且一直使用表面电位对脑电图和ERP研究的进展构成了相当大的障碍。本文发表在International Journal of Psychophysiology杂志。

    03

    EEG信号处理与分析常用工具包介绍【第2波】

    ERPLAB工具包是由ERP领域的大牛Steven J Luck团队研发的专门针对ERP分析的工具包。ERPLAB并不是一个独立的工具包,而是作为EEGLAB工具包的一个插件。ERPLAB可以进行滤波、重参考、去除噪声等ERP的预处理,可以计算和绘制平均ERP和差异波,可以绘制幅值地形图,最为重要的是可以计算(局部)峰潜伏期、(局部)峰幅值、平均幅值、面积幅值等多种ERP参数。此外,ERPLAB还提供了permutation和Mass Univariate统计分析方法。除了功能上的一应俱全,对于编程小白来说最为重要的是,ERPLAB具有GUI界面,只需点击几个按钮和键盘即可完成一系列操作。当然,对于有编程经验的研究者,ERPLAB也提供了现成的代码和函数供调用。 官方网址:https://erpinfo.org/

    00

    无药帕金森病患者的时空脑电微状态分析

    帕金森病(PD)的临床诊断非常困难,尤其是在早期阶段,因为没有可以参考的生理指标。帕金森病患者早期未用药时脑功能障碍指标可为帕金森病的早期诊断和后期治疗提供有价值的依据。为了寻找帕金森病患者脑功能障碍的时空特征标识,采用静息状态脑电微状态分析方法,对23例无药帕金森病患者和23例健康对照者进行了亚秒时间尺度上的全脑瞬态分析。微状态分析结果显示,帕金森病患者存在着与健康对照组不同的独特的空间微状态,其他几种典型微状态与正常对照组相比有显著差异,这些差异体现在微状态参数上,如帕金森病患者的某类微状态持续时间更长,出现次数更多。相关分析表明,多种微状态参数与运动功能减退、认知功能减退等显著临床症状之间存在显著的相关性。这些结果表明,本研究发现了反映帕金森病早期大脑功能障碍的多个可量化的特征标签,这种微状态的时间动态与代表运动功能和认知水平的临床评分相关。

    03

    EEG中如何鉴别心电干扰信号

    在EEG的信号处理过程中,通过独立成分分析(ICA)去除各种干扰信号应该是最麻烦的步骤,因为它需要操作者的主观判断,需要一定的经验才能准确无误地鉴别干扰信号。这一步对于新手朋友来说也是最为困难的一步。EEG中包含的主要噪声成分包括肌电、眼电、心电等,其中肌电和眼电非常常见,但是心电信号有时候能够在EEG中看到,有时并不存在。因此,在EEG预处理过程中也往往会忽略心电干扰信号的去除。在本文中,笔者针对心电干扰信号,简述其脑地形图、功率谱、时域信号的特征(注:这里所说的都是脑电信号ICA之后的心电成分),以帮助新手朋友快速鉴别这种干扰信号。

    01

    作为一种连续现象的EEG微状态

    近年来,脑电微状态分析作为一种描述大规模电生理数据时空动态性特征的工具得到了广泛的应用。脑电微状态被认为存在两种假设:(1)“胜者为王”,即任何给定时间点的地形图都处于一种状态;(2)从一种状态离散地转换到另一种状态。在本研究中,我们从脑电数据的几何角度研究了这些假设,将微状态地形作为原始通道空间子空间的基向量。我们发现,微状态内和微状态间的距离分布在很大程度上是重叠的:对于低全局场强 (GFP)范围,标记为一个微状态的单个时间点通常与多个微状态向量等距,这挑战了“胜者为王”的假设。在高场强下,微状态的可分性有所改善,但仍然较弱。虽然许多GFP峰(用于定义微状态的时间点)出现在高GFP范围内,但与较差可分性相关的低GFP范围也包含GFP峰。此外,几何分析表明,微状态及其跃迁看起来更像是连续的,而不是离散的,传感器空间轨迹变化率的分析显示了渐进的微状态转变。综上所述,我们的发现表明,脑电微状态被认为在空间和时间上是连续的更好,而不是神经集群的离散激活。 1.背景 基于脑电地形图具有准稳定模式的发现,研究人员描述这些稳定的地形图为脑电微状态。脑电微状态分析被认为是研究许多认知过程的神经特征的有效方法,也是研究脑电动态性并将之与认知和疾病联系起来的一种有效的方法。 当前的微状态模型基于两个关键假设,其中之一就是在任何时间点都存在一个单一的状态,即“胜者为王”原则。在脑电数据的几何角度下,M通道脑电数据集可以概念化为M维空间,每个时间点的地形对应于该M维空间中的一个坐标。微状态分析也可以看作是一种降维技术,它将每个微状态概念化为一维子空间,即表征为传感器空间中的向量。目前,将脑电数据紧密分布在(少量)微状态向量周围的假设称为离散性假设。如果微状态分析的离散性假设成立,那么与每个微状态相关的数据点应该紧密地分布在其父向量的周围,并且快速过渡到另一个微状态。 本研究使用标准微状态分析并结合经验和仿真数据的正交投影距离来表明,在传感器空间中,一个微状态内的时间点不一定局限于其父微状态向量周围。相反,单个时间点的地形图可以接近于多个微状态,并且取决于全局场功率,并且随着时间的推移而平滑地改变。因此,本研究表明,时空离散性的假设可能不能准确地捕捉到微状态的本质。此外,我们还证明了主成分分析可以用来可视化3D中的数据分布,因为它保留了不同聚类之间和聚类内的距离。 2.材料与方法 2.1 数据描述 本研究中,我们分析了两个数据集。我们使用了68名对照组和46名抑郁症/高BDI组,数据以500 Hz重新采样。 2.2 实验装置 使用64通道神经扫描系统记录数据,电极布置符合10-10国际系统。 2.3 数据分析 使用MATLAB中的EEGLAB工具箱导入数据进行分析。这些数据最初有66个通道,其中60个通道被保留下来进行分析。在进一步分析之前进行平均参考。然后,对数据进行1-30 Hz的带通滤波。执行ICA后手动清理数据。去除无关的伪影成分。 2.4 微状态分析 微状态分析算法包括以下步骤: (1)我们使用L1范数来计算GFP。这产生了GFP的时间序列,它反映了随着时间推移地形中的总能量(图1A-B)。 (2)GFP(t)的局部最大值被送到改进的k-均值聚类算法(步骤3-7)(图1C)。我们选择了四个聚类进行分析。 (3)聚类过程从随机选择n个模板图开始,其中n是聚类或微状态图的数量。 (4)利用GFP峰值数据计算n个模板图的空间相关性。取空间相关性的绝对值确保结果不依赖于地形图极性。 (5)计算模板图的解释方差。 (6)重新定义模板图,通过从每个聚类中提取所有地形图的第一主成分来实现。 (7)重复步骤4至6,直到解释方差不随迭代次数增加而改善。 (8)选择一组新的n个随机选择的模板图,并重复步骤3到7。最后,选择解释方差最大的一组模板图作为最终的微状态向量。

    01

    从EEG中解码想象的3D手臂运动轨迹以控制两个虚拟手臂

    使用从EEG解码的信息来实现对人工或虚拟手臂的在线控制通常是通过对不同的激活状态进行分类或与对象的不同显性动作相关的感觉运动活动的自愿调节来实现的。然而,一些研究报道了使用更自然的控制方案,例如解码想象的3D手臂运动的轨迹来移动假肢,机器人或虚拟手臂,所有方法都使用离线前馈控制方案。在该项研究中,研究人员首次尝试实现在线控制两个虚拟手臂,从而在3D空间中朝三个目标/手臂移动。使用多重线性回归,从mu,low beta, high beta, 和lowgamma EEG振荡的功率谱密度解码出想象的手臂运动的3D轨迹。研究人员在数据集上进行了实验分析,该数据集记录了三个受试者在七个会话,其中每个会话包括三个实验块:一个离线校准块和两个在线反馈块。利用虚拟武器的预测轨迹计算目标分类精度,并将其与基于滤波器组公共空间模式(FBCSP)的多类分类方法的结果进行了比较,该方法包括互信息选择(MI)和线性判别分析(LDA)模块。

    01

    时频分析方法及其在EEG脑电中的应用

    EEG提供了一种测量丰富的大脑活动即神经元振荡的方法。然而,目前大多数的脑电研究工作都集中在分析脑电数据的事件相关电位(ERPs)或基于傅立叶变换的功率分析,但是它们没有利用EEG信号中包含的所有信息——ERP分析忽略了非锁相信号,基于傅里叶的功率分析忽略了时间信息。而时频分析(TF)通过分离不同频率上功率和相位信息,可以更好地表征脑电数据中包含的振荡,TF提供了对神经生理机制更接近的解释,促进神经生理学学科之间的连接,并能够捕获ERP或基于傅里叶分析未观察到的过程(如连通性)。但是,本文献综述表明,脑电时频分析尚未被发展认知神经科学领域所广泛应用。因此,本文从概念上介绍时频分析,为了让研究人员便于使用时频分析,还提供了一个可访问脚本教程,用于计算时频功率(信号强度)、试次间相位同步(信号一致性)和两种基于相位的连接类型(通道间相位同步和加权相位滞后指数)。

    02

    ​厦大等高校研究人员利用卷积神经网络学习脑电地形图表示进行分类

    脑电图(EEG)地形图表征(Electroencephalography topographical representation, ETR)可以监测区域大脑活动,是一种可以用于探索皮层机制和联系的技术。然而,如何找到一种鲁棒的方法来支持多目标对象、多通道的具有低信噪比的高维EEG数据是一个挑战。为了解决这一问题,厦门大学、海西研究院泉州装备制造研究所、华中师范大学以及云南民族大学等多所研究机构的研究人员联合提出了一种新的ETR能量计算方法,用于使用卷积神经网络学习大脑活动的EEG模式。它能够在一个通用的学习模型中识别多个对象。具体而言,研究人员在实验中使用里来自2008年脑机接口(BCI)竞赛IV-2a的数据集进行五类分类,其中包含四个运动想象动作和一个放松动作。在该项研究中,提出的分类框架的平均准确率比最好的分类方法高10.11%。另外,研究人员通过对ETR参数优化的研究,得到了一种用于BCI应用的用户界面,并实现了一种实时优化方法。

    02

    帕金森病患者脑电时空微状态分析

    《本文同步发布于“脑之说”微信公众号,欢迎搜索关注~~》 1.研究背景    由于缺少可以参考的生理指标,帕金森病(Parkinson’s disease, PD)的临床诊断非常困难,特别是在疾病的早期。早期PD无药物患者以运动功能受损、认知能力下降等临床症状为特征,这些症状是由大脑动态活动功能障碍引起的。PD患者早期非药物状态下的脑功能障碍指标可能为PD早期诊断及后期治疗提供有价值的依据,为了寻找PD脑功能障碍的时空特征标志,研究人员采用静息状态脑电图微状态分析,在亚秒时间尺度上对23例无药物治疗的PD患者与23例健康对照者的全脑短暂稳定状态进行了比较。脑电图微状态反映了短暂稳定的具有时空特征的脑拓扑结构,而空间特征的微状态分类和时间参数为了解PD患者的脑功能活动提供了依据。为了进一步探讨时间微状态参数与显著临床症状之间的关系,以确定这些参数能否作为临床辅助诊断的依据,研究人员采用一般线性模型(general linear model, GLM)来探讨微状态参数与临床量表及多个患者属性的相关性,并采用Wilcoxon秩和检验来量化影响因素与微状态参数之间的线性关系。 2、方法 2.1被试    纳入天津医科大学总医院精神科23例患者(15例女性,年龄60-74岁,平均67岁;8男:年龄65-75岁,平均68岁)。    9例患者以运动迟缓为首发症状,14例为静息性震颤。所有患者均被诊断为原发性PD,病程3.2±2.5年,所有患者均在无药效学效应(即无药物作用)情况下,为收集脑电图数据而停药超过12 h,没有患者出现头部震颤。此外,23名年龄和性别匹配的健康参与者(12名女性:年龄范围60-70岁,平均年龄65岁;11名男性:年龄60-74岁,平均66岁)无神经或精神病史为对照组。表1描述了纳入患者的详细信息。

    01

    老年人θ-γ跨频率耦合与工作记忆表现之间的纵向关系

    摘要:θ-γ耦合(TGC)是支撑工作记忆的一种神经生理机制,与N-back任务(一种工作记忆任务)的表现相关。与TCG类似,θ和α能量的事件相关同步(ERS)与事件相关去同步(ERD)也和工作记忆有关。但目前为止,还鲜少有研究探讨工作记忆任务表现与TCG,ERS和ERD之间的关系。本研究旨在探讨在六到十二周时间范围内,不同临床症状的老年人工作记忆表现的变化是否与TCG,ERS或ERD的变化相关。两组共62名60岁以上的被试参与了研究,一组是无精神疾病控制组;一组是缓解期的重度抑郁症(MDD)老年人。在N-back任务(3-back条件)期间,用EEG评估被试的TGC,ERS以及ERD指标。结果显示,随着时间推移,在控制组中的TGC、α频段的ERD和ERS以及θ频段的ERS改变与3-back任务表现的改变相关;然而在MDD组中,3-back任务表现的变化只与TCG的改变相关。这表明,随着时间的推移,在不同临床状况人群下的工作记忆表现与TGC之间的关系是稳固的,但对于θ和α频段的ERS和ERD来说,它们与工作记忆之间的关系则没那么稳固。

    04

    Neuron:背侧流中θ振荡的选择性夹带可提高听觉工作记忆表现

    已经证实背侧流(Dorsal Stream)在工作记忆中操作听觉信息的作用。然而,该网络中的振荡动力学及其与行为的因果关系仍未明确。通过同步使用MEG/EEG,我们发现在需要比较两种不同时间顺序模式差异的任务中,背侧流中θ振荡可以预测被试的操作能力。我们利用θ节律性TMS与EEG结合的方法,在两种刺激之间的静息态间隔内,对MEG识别目标(左侧顶内沟)进行脑振荡与行为之间的因果关系研究。节律性TMS引发了θ振荡并提高了被试的准确性。TMS诱发的振荡夹带随着行为增强而增加,而且这两种增强都随着被试的基线水平而产生变化。这些结果在旋律对比控制任务(melody-comparison control task)中没有观察到,在非节律性TMS中也没有观察到。这些数据表明,背侧流中的θ活动与记忆操作有因果关系。本文发表在Neuron杂志。

    02

    Nature子刊 | 使用非侵入式超高密度记录方法绘制大脑中央沟图谱

    本文评估了使用带有镀金电极点的柔性印刷电路板(PCB)的超高密度脑电图(uHD EEG)系统。电极间距离为8.6mm,电极直径为5.9mm,电极密度高于市场上市售的脑电图系统。图1a描绘了标准化的电极定位系统。10-20系统中的21个标准位置是深灰色的。图1a还包括另外两个系统:10-10系统(标记为填充的浅灰色圆圈)和扩展的10-10系统(标记为浅灰色圆圈)。本文中的uHD脑电图系统由图1a中的小黑圈和图1b,c中的填充小黑圆圈表示。使用MATLAB(R2019b)的EEGLAB工具箱对收集到的数据进行预处理。我们采用平均去除法进行基线去除,并对0.5~40Hz的数据进行时域变换。用标记“1”分为“试验×通道×时间样本”格式。

    01

    NeuroImage:警觉性水平对脑电微状态序列调制的证据

    大脑的瞬时整体功能状态反映在其电场构型中,聚类分析方法显示了四种构型,称为脑电微状态类A到D。微状态参数的变化与许多神经精神障碍、任务表现和精神状态相关,这确立了它们与认知的相关性。然而,使用闭眼休息状态数据来评估微状态参数的时间动态的常见做法可能会导致与警觉性相关的系统性混淆。研究人员研究了两个独立数据集中的微状态参数的动态变化,结果表明,微状态参数与通过脑电功率分析和fMRI全局信号评估的警觉性水平有很强的相关性。微状态C的持续时间和贡献,以及向微状态C过渡的概率与警觉性正相关,而微状态A和微状态B则相反。此外,在寻找微状态与警觉性水平之间对应关系的来源时,研究发现警觉性水平对微状态序列参数的格兰杰因果效应。总而言之,本研究的发现表明,微状态的持续时间和发生具有不同的起源,可能反映了不同的生理过程。最后,本研究结果表明,在静息态EEG研究中需要考虑警觉性水平。

    00

    PNAS脑电研究:说话人的注视增加婴儿和成人大脑之间的信息偶联

    来自剑桥大学心理学部的Victoria Leong等人采用EEG同步测量的方法,记录了成人和婴儿进行眼神沟通时的脑电信号,发现成人的注视会增强婴儿和成人的脑间连接强度。该文发表在PNAS杂志上。 以往的工作发现成人之间有效沟通时,沟通双方的神经活动具有紧密的时间依赖性,而婴儿与成人沟通时,由于缺乏语言沟通,严重依赖像眼神注视这样的社交信号来完成,那么婴儿与成人之间是否存在类似的神经活动表现?来自英国剑桥大学心理学系的研究人员通过运用双EEG记录来评估直接注视是否会增加成人和婴儿间神经偶联来回答这个问题。研究

    08

    Cell:视觉错觉运动刺激的探索:基于EEG的实用辅助系统的脑机接口

    本文提出了一种基于视觉错觉运动刺激(illusory visual motion stimuli)的脑机接口(BCI),旨在使用提出的系统来增强运动想象(MI)的范式。由于运动想象需要较长时间的训练,因此通过感官系统进行外部刺激的刺激方法是一种提高效率的替代方法。该项研究分为两个部分。首先,研究人员观察了基于脑地形图的视觉运动错觉模式。其次,研究者实现了基于视觉错觉运动刺激的BCI系统。箭头和移动箭头模式用于调节视觉皮层和运动皮层的alpha节律。箭头模式的平均分类准确率约为78.5%。另外,使用提出的特征提取和决策算法,提出了基于视觉错觉运动刺激的BCI系统。该BCI系统可以通过设计的算法控制光标左右移动,生成5个辅助通信指令。10名志愿者参与了这项实验,并使用了一个带有运动想象和视觉错觉运动的脑机接口系统来比较效率。结果表明,该方法比运动想象的准确率提高了约4%。所提出的视觉错觉运动刺激和算法的正确率约为80.3%。研究人员表示,可以在基于MI的脑机接口系统中加入一种视觉错觉运动刺激混合脑机接口系统,以进行初学者运动想象。

    03

    用于追踪认知任务期间的亚秒级脑动态的高密度脑电

    这项工作为社区提供了高密度脑电图(HD-EEG, 256个通道)数据集,这些数据集是在无任务和任务相关范式下收集的。它包括43名健康的参与者执行视觉命名和拼写任务,视觉和听觉命名任务和视觉工作记忆任务,以及静息状态。HD-EEG数据以脑成像数据结构(bid)格式提供。这些数据集可以用来(i)追踪大脑网络动力学和在不同条件下(命名/拼写/其他)的次秒级时间尺度,和模态(听觉、视觉)的快速重新配置和相互比较,(ii)验证几个方法中包含的参数,这些方法是用来通过头皮脑电图估计大脑皮层网络,例如最优通道数量和感兴趣区域数量的问题,以及(iii)允许到目前为止使用HD-EEG获得的结果的再现性。我们希望,这些数据集的发布将推动新方法的发展,可以用来评估大脑皮层网络,并更好地了解大脑在休息和工作时的一般功能。 数据可从https://openneuro.org免费获取。 1.1.背景和概要 新的证据表明,来自于空间上遥远的大脑区域之间的通信导致大脑功能(失能)。尽管在过去的几十年里,功能性磁共振成像已经给神经科学带来了革命性的变化,但其固有的时间分辨率较差,这是限制其用于跟踪快速大脑网络动态的主要缺陷,而这种网络动态是多个大脑(认知和感知运动)过程执行的基础。脑电图/脑磁图(EEG/MEG)是一种独特的非侵入性技术,能够在毫秒的时间尺度上跟踪大脑动态。 在无任务范式和任务相关范式下,已经有一些研究使用脑电图/脑磁图源连通性方法来跟踪大脑皮层网络。然而,尽管人类连接组项目(HCP)和几个脑电图数据集的MEG数据集模型得到了人们的称赞,但只有很少的数据可以同时用于休息和任务,并且在不同任务中开放获取的高密度脑电图(HD-EEG, 256个通道)数据仍然缺失。 HD-EEG与复杂的信号处理算法相结合,正日益将EEG转变为一种潜在的神经成像模式。最近的脑电图研究揭示了在休息和认知任务期间跟踪快速功能连接动态的可能性。此外,一些研究报告了HD-EEG数据(与低脑电通道密度相比)在某些病理条件下的潜在应用,如癫痫网络的定位和神经退行性疾病中认知功能下降的检测。此外,新出现的证据表明,在一定程度上,使用HD-EEG可以捕获皮层下的结构。在这种背景下,无任务和任务相关的可用性开放HD-EEG数据库正在快速成为强制性的(i)解读(次秒级)重组的脑功能网络在认知,(ii)开发新的信号处理方法,充分估计大脑皮层网络和(iii)允许使用HD-EEG到目前为止结果的再现性。 在此,我们提供了第一个开放获取的HD-EEG(256通道)数据集,在休息状态和4种不同的任务(视觉命名、听觉命名、视觉拼写和工作记忆)下记录。部分数据已经被用于开发和分析各种信号处理方法。 特别地,我们的努力集中在对休息和图片命名期间的脑功能网络的估计上。然而,这些研究都没有描述数据集的细节,而且到目前为止的工作只用了小部分数据。在这项工作中,我们提供了所有必要的细节和一个开放的数据库,以便国际科学界能够在无任务和与任务相关的范式中自由地产生对大脑功能的更好的理解。这也将有助于新方法的开发,以提高目前使用的HD-EEG评估皮质脑网络的技术的准确性,并通过比较结果和未来的meta分析来使得这些技术互相面对。我们希望这个数据集将有助于使脑电图源空间网络分析成为一种成熟的技术,以解决认知和临床神经科学中的一些问题。 1.2 方法 1.2.1 数据采集 数据是2012年至2017年在法国雷恩进行的两项不同实验中收集的。第一数据集包括视觉对象名字的命名和拼写(图1)。第二个数据集包括静息状态、视觉/听觉命名和视觉工作记忆任务(图2)。同样的设备中使用的数据集和录音都在同一个地方(雷恩大学医院中心)。采用HD-EEG系统(EGI,256个电极)以1 KHz采样率记录脑活动,电极阻抗保持在50 k ω以下。两项研究的参与者是不同的。他们提供了参与的书面知情同意,并完成了一些纳入/排除标准问卷(总结见表1)。参与者坐在法拉第结构房间的扶手椅上。房间由百叶窗减弱的自然光照亮。我们的参与者的头大约位于屏幕前1米。图像以白色背景上的黑色图画的形式集中呈现,没有任何尺寸修改(10厘米x 10厘米)。这种设置对应于从注视点的最大靠近度2.86度的视角,从而使整个图像处于参与者的中心凹视野内。声音通过50瓦的罗技扬声器显示,没有任何音频隔离的可能性。

    00
    领券