首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Pandas实现一数据分隔为两

分割成一个包含两个元素列表的 对于一个已知分隔符的简单分割(例如,用破折号分割或用空格分割).str.split() 方法就足够了 。 它在字符串的(系列)上运行,并返回列表(系列)。..., B1] A1 B1 1 A2-B2 [A2, B2] A2 B2 补充知识:pandas某一中每一行拆分成多行的方法 在处理数据过程中,常会遇到将一条数据拆分成多条,比如一个人的地址信息中,可能有多条地址...,既有家庭地址也有工作地址,还有电话信息等等类似的情况,实际使用数据的时候又需要分开处理,这个时候就需要将这一条数据进行拆分成多条,以方便使用。...split拆分工具拆分,并使用expand功能拆分成多 将拆分后的多数据进行列转行操作(stack),合并成一 将生成的复合索引重新进行reset保留原始的索引,并命名 将上面处理后的DataFrame...以上这篇Pandas实现一数据分隔为两就是小编分享给大家的全部内容了,希望能给大家一个参考。

6.9K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python-科学计算-pandas-14-df进行转换

    系统:Windows 7 语言版本:Anaconda3-4.3.0.1-Windows-x86_64 编辑器:pycharm-community-2016.3.2 pandas:0.19.2 这个系列讲讲...Python的科学计算及可视化 今天讲讲pandas模块 将Df进行转换 Part 1:目标 最近在网站开发过程中,需要将后端的Df数据,渲染到前端的Datatables,前端识别的数据格式有以下特征...Part 2:代码 import pandas as pd dict_1 = {"time": ["2019-11-02", "2019-11-03", "2019-11-04", "2019-11-...Part 3:部分代码解读 list_fields = df_1.to_dict(orient='records'),使用了to_dict函数,其中orient=’records’,简单记忆法则,records...表示记录,对应数据库的行 Part 4:延伸 以上方法将Df行转换,那么是否可以进行转换呢?

    1.9K30

    使用 Python 行和对矩阵进行排序

    在本文中,我们将学习一个 python 程序来行和对矩阵进行排序。 假设我们采用了一个输入的 MxM 矩阵。我们现在将使用嵌套的 for 循环对给定的输入矩阵进行逐行和排序。...使用 for 循环遍历矩阵的行。 使用另一个嵌套的 for 循环遍历窗体(行 +1)列到的末尾。 将当前行、元素与、行元素交换。...通过调用上面定义的 printingMatrix() 函数行和排序后打印生成的输入矩阵。...例 以下程序使用嵌套的 for 循环返回给定输入矩阵的行和排序的矩阵 - # creating a function for sorting each row of matrix row-wise...此外,我们还学习了如何转置给定的矩阵,以及如何使用嵌套的 for 循环(而不是使用内置的 sort() 方法)行对矩阵进行排序。

    6.1K50

    Excel排序和行排序

    文章背景:Excel二维表中记录着多行多的数据,有时需要按行或排序,使数据更加清晰、易读。下面分别对排序和行排序进行介绍。...排序 视频演示:http://mpvideo.qpic.cn/0bf2kyaamaaazaab47jfqnpvavwdazlaabqa.f10002.mp4?...对于商品编号一,存在文本型数字,因此,排序时会出现排序提醒。 将任意类似数字的内容排序 所有类似数字的文本会以数字大小排序。...行排序 视频演示:http://mpvideo.qpic.cn/0b78lyaaaaaapuabszbfqjpvaxwdabpaaaaa.f10002.mp4? 本例中,行一代表各个月份。...在进行行排序时,数据区域不包括A。在Excel中,没有行标题的概念。因此,排序前如果框中A的话,A也将参与排列,会排到12月份之后,而这不是我们想要的结果。

    3.1K10

    pandas按照指定的排序、paste命令指定分隔符、ggplot2添加拟合曲线

    pandas 按照指定的排序 aa = {'AA':[1,2,3],"BB":[4,5,6],"CC":['A_3','A_1',"A_2"]} df = pd.DataFrame(aa) df.sort_values...("CC") 这样df本身不变 df.sort_values("CC",inplace=True) 这样df自己就变了 linux paste命令可以通过 -d参数指定分隔符,默认好像是空格还是tab...paste是用来合并列的 paste -d , L01.csv L02.csv > col_merged.csv R语言数据框统计每行或者每中特定元素的个数 比如每行中的元素等于0的有多少个 用到的是...apply(df == 0,1,sum) [1] 0 1 1 0 0 0 0 2 0 0 > apply(df == 0,2,sum) A B 3 1 第二个位置的参数如果是1就按每行算,如果是二就用每算...ggplot2添加拟合曲线 使用geom_smooth()函数 添加二次方程的拟合曲线 library(ggplot2) x<-seq(-2,2,by=0.05) y<-x^2 df<-data.frame

    1.2K20

    BI技巧丨排序

    常规的解决办法就是新增一数字,然后使用排序” 功能进行强制排序。排序固然可以解决中文字段的排序问题,但是使用之后,在某些场景下,使用DAX计算,会有一些额外的问题。...本期,我们来看一下排序功能产生的小问题以及解决方式。案例数据:图片图片数据比较简单,一张分店的维度信息表,一张销售事实表。...当StoreName这一,根据StoreID这一排序后,我们原本的分组计算度量值和分组排名度量值都失效了。...原因:当我们使用排序功能后,原本的字段和排序依据的字段相当于强关联,两个字段具有同等的直接筛选效果。因此,在涉及到清除上下文筛选时,如果原字段需要被清除筛选,则排序依据也需要被清除筛选。

    3.5K20

    pandas基础:重命名pandas数据框架

    准备用于演示的数据框架 pandas库提供了一种从网页读取数据的便捷方式,因此我们将从百度百科——世界500强公司名单——加载一个表格。 图1 看起来总共有6。下面单独列出了这个表的。...我们可以使用这种方法重命名索引(行)或,我们需要告诉pandas我们正在更改什么(即或行),这样就不会产生混淆。还需要在更改前后告诉pandas列名,这提高了可读性。...我选择不覆盖原始数据框架(即默认情况下inplace=False),因为我希望保留原始数据框架以供其他演示使用。注意,我们只需要传入计划更改名称的。...图8 通过将上述列名重新赋值给一个新的类似列表的对象,我们可以轻松更改这些列名: 图9 注意,此方法与set_axis()方法类似,因为我们需要为要保留的每一传入名称。 何时使用何方法?....rename()方法要求我们只传递需要更改的 .set_axis()和df.columns要求我们传递所有列名 换句话说,使用: .rename()当只需要更改几列时。

    1.9K30

    Pandas班拆分Excel文件+班排名和级排名

    Pandas groupby rank, 今天学习有: 1。用pandas.groupby+apply+to_excel进行‘班别’对一个Excel文件拆分成一个班一个文件的操作。...简单又强大 2.pandas+groupby+rank利用总分班排名与级排名 原数据表 # -*- coding: UTF-8 -*- import pandas as pd df=pd.read_excel...('data_1.xlsx') """ print(df) #在的方向上删除‘学号’‘语文’ df=df.drop(['学号','语文'],axis=1) print(df) #在的方向上删除index...为1 和2 的整行数据 df=df.drop([1,2],axis=0) print(df) """ #f=df.groupby(['班别']).get_group(901) #print(f) #班别拆分开另存了一个班一个...x.name}.xlsx',index=False)) #按语文成绩排名,并添加‘语名’并输入数字 #df['语名']=df['语文'].rank(ascending=0,method='dense') #只是数学成绩排名

    1.2K30

    怎样能自动01 02 最大为99,来设置标题?

    一、前言 前几天在Python最强王者交流群有个粉丝咨询了这个问题:获取到数据表的数比较简单,一般不超过99,怎样能自动01 02 最大为99,来设置标题?...二、实现过程 针对这个问题,【群除我佬】给了一个代码,如下所示: ["0" + str(i) if len(str(i)) < 2 else "" + str(i) for i in range(1,100...)] 后来【~上善居士~ 郭百川】使用字符串格式化,也给了一个代码,如下所示: [f"{i:02d}" for i in range(1,100)] 后来【Eric】也给了一个可行的代码,如下所示...: columns = [] for i in range(10): columns.append(f"{i:02d}") print(columns) df.columns = ['00',...(str(i)) < 2 else "" + str(i) for i in range(1,df. shape[1]+1)] [f"{i:02d}" for i in range(1,df.shape

    1.1K20
    领券