首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用 Jackson – 将字符串转换为 JsonNode 对象

    概述 本快速指南的主要目的是如何使用 Jackson 2 来将一个字符串转换为 JsonNode 对象。...快速转换 可以使用下面的代码直接进行转换。 转换的方式也比较简单,在定义好 ObjectMapper 对象后,直接使用这个对象的 readTree 方法将输入的字符串转换为 JsonNode 对象。...当 JSON 字符串被处理成了 JsonNode 对象后,那我们可以使用 JSON Tree Model 来对转换后的 JSON 对象进行操作。...fasterxml 的 jackson 包对 Json 数据操作之前,首先需要做的事情就是将输入的 String 或者文件或者不同的输入流转换为 JsonNode 对象。...后续的操作就是对 JsonNode 的对象进行操作了。 例如,上面我们的一个 JsonNode 对象是一个数组,那么我们可以对上面的数组中转换后的对象进行遍历。

    9.9K20

    Python使用pandas扩展库DataFrame对象的pivot方法对数据进行透视转换

    Python扩展库pandas的DataFrame对象的pivot()方法可以对数据进行行列互换,或者进行透视转换,在有些场合下分析数据时非常方便。...DataFrame对象的pivot()方法可以接收三个参数,分别是index、columns和values,其中index用来指定转换后DataFrame对象的纵向索引,columns用来指定转换后DataFrame...对象的横向索引或者列名,values用来指定转换后DataFrame对象的值。...为防止数据行过长影响手机阅读,我把代码以及运行结果截图发上来: 创建测试用的DataFrame对象: ? 透视转换,指定index、columns和values: ?...透视转换,不指定values,但可以使用下标访问指定的values: ?

    2.5K40

    pandas

    列中的日期转换为没有时分秒的日期 df.to_excel("dates.xlsx") 向pandas中插入数据 如果想忽略行索引插入,又不想缺失数据与添加NaN值,建议使用 df['column_name...在我们使用append合并时,可能会弹出这个错误,这个问题就是pandas版本问题,高版本的pandas将append换成了-append results = results.append(temp,..._append(temp, ignore_index=True) pandas数据转置 与矩阵相同,在 Pandas 中,我们可以使用 .transpose() 方法或 .T 属性来转置 我们的DataFrame...通常情况下, 因为.T的简便性, 更常使用.T属性来进行转置 注意 转置不会影响原来的数据,所以如果想保存转置后的数据,请将值赋给一个变量再保存。...对象,将列表作为一列数据 df = pd.DataFrame(data, columns=['姓名']) df_transposed = df.T # 保存为行 # 将 DataFrame

    13010

    pandas 变量类型转换的 6 种方法

    (s) # 默认float64类型 pd.to_numeric(s, downcast='signed') # 转换为整型 4、转换字符类型 数字转字符类型非常简单,可以简单的使用str直接转换。...a = '[1,2,3]' type(a) >> str eval(a) >> [1, 2, 3] 5、转换时间类型 使用to_datetime函数将数据转换为日期类型,用法如下: pandas.to_datetime...默认情况下,convert_dtypes将尝试将Series或DataFrame中的每个Series转换为支持的dtypes,它可以对Series和DataFrame都直接使用。...该方法的参数如下: infer_objects:默认为True,是否应将对象dtypes转换为最佳类型 convert_string:默认为True,对象dtype是否应转换为StringDtype()...convert_integer:默认为True,如果可能,是否可以转换为整数扩展类型 convert_boolean :默认为True,对象dtype是否应转换为BooleanDtypes() convert_floating

    4.9K20

    Pandas与openpyxl库的完美融合!

    Pandas绝对是Python中处理Excel最快、最好用的库,但是使用openpyxl的一些优势是能够轻松地使用样式、条件格式等自定义电子表格。...如果你又想轻松的使用Pandas处理Excel数据,又想为Excel电子表格添加一些样式,应该怎么办呢? 但是您猜怎么着,您不必担心挑选。...事实上,openpyxl 支持将数据从Pandas的DataFrame转换为工作簿,或者相反,将openpyxl工作簿转换为Pandas的DataFrame。...") 结果如下: 工作簿转DataFrame 如果有这样一份数据,我们想将其转换为DataFrame,应该怎么做?...其实这个有点多此一举,我们直接使用pandas读取后,处理完数据,在进行样式设计不就行了吗?为何一开始非要使用openpyxl读取工作簿呢?

    2.3K30

    解决AttributeError: DataFrame object has no attribute tolist

    解决方法要解决这个错误,我们可以使用Pandas库中的​​.values.tolist()​​方法来将DataFrame对象转换为列表。...()在这个修复后的代码中,我们使用了​​.values.tolist()​​方法将DataFrame对象​​df​​转换为列表​​lst​​。​​....要解决这个错误,我们需要使用​​.values.tolist()​​方法将DataFrame对象转换为列表。 希望本篇文章能帮助你解决这个错误,并更好地使用Pandas库进行数据分析和处理。...tolist()​​​方法是Pandas库中DataFrame对象的一个方法,用于将DataFrame对象转换为列表形式。...通过使用​​.tolist()​​方法,我们将DataFrame对象转换为列表。打印输出的结果是每一行数据作为一个列表,再将所有行的列表组合成一个大的列表。

    1.3K30

    读完本文,轻松玩转数据处理利器Pandas 1.0

    作者:Tom Waterman 编译:李诗萌、魔王 本文转自:机器之心 2020 年 1 月 9 日 Pandas 1.0.0rc 版本面世,Facebook 数据科学家 Tom Waterman 撰文概述了其新功能...1.0.0rc0 使用 DataFrame.info 更好地自动汇总数据帧 我最喜欢的新功能是改进后的 DataFrame.info (http://dataframe.info/) 方法。...不过,Pandas 推荐用户合理使用这些数据类型,在未来的版本中也将改善特定类型运算的性能,比如正则表达式匹配(Regex Match)。...默认情况下,Pandas 不会自动将你的数据强制转换为这些类型。但你可以修改参数来使用新的数据类型。...另外,在将分类数据转换为整数时,也会产生错误的输出。特别是对于 NaN 值,其输出往往是错误的。因此,新版 Pandas 修复了这个 bug。

    3.5K10

    Numpy和pandas的使用技巧

    '' '''2、np.cumsum()返回一个数组,将像sum()这样的每个元素相加,放到相应位置''' '''NumPy数组实际上被称为ndarray NumPy最重要的一个特点是N维数组对象...ndarray,它是一系列同类型数据的集合 1、创建数组,将序列传递给numpy的array()函数即可,从现有的数据创建数组,array(深拷贝),asarray(浅拷贝); 或者使用arange...(必须使用iloc) a.iloc[:,0:3] df.iloc[:,[-1]] a[["feature_1", "feature_2"]] 获取dataframe列名 df.columns返回一个可迭代对象...dataframe 横向 pd.concat([a,a],axis=1) 纵向 pd.concat([a,a],axis=0) 数据去重 import pandas as pd df = pd.DataFrame...:点到选中的行Ctrl+Shift+- #将代码块合并:使用Shift选中需要合并的框,Shift+m #在代码块前增加新代码块,按a;在代码块后增加新代码块,按b; #删除代码块,按dd #运行当前代码块

    3.5K30

    【精心解读】用pandas处理大数据——节省90%内存消耗的小贴士

    pandas已经为我们自动检测了数据类型,其中包括83列数值型数据和78列对象型数据。对象型数据列用于字符串或包含混合数据类型的列。...Dataframe对象的内部表示 在底层,pandas会按照数据类型将列分组形成数据块(blocks)。...这对我们原始dataframe的影响有限,这是由于它只包含很少的整型列。 同理,我们再对浮点型列进行相应处理: 我们可以看到所有的浮点型列都从float64转换为float32,内存用量减少50%。...将其转换为datetime的意义在于它可以便于我们进行时间序列分析。 转换使用pandas.to_datetime()函数,并使用format参数告之日期数据存储为YYYY-MM-DD格式。...总结 我们学习了pandas如何存储不同的数据类型,并利用学到的知识将我们的pandas dataframe的内存用量降低了近90%,仅仅只用了一点简单的技巧: 将数值型列降级到更高效的类型 将字符串列转换为类别类型

    8.7K50
    领券