时间序列的索引与切片 索引 时间序列的索引方法同样是适用于Dataframe,而且在时间序列中由于按照时间先后排序,故不用考虑顺序问题。...基本位置索引,使用的方法和列表类似: from datetime import datetime rng = pd.date_range('2017/1','2017/3') ts = pd.Series...print(ts[datetime(2017,1,20)]) >>> 0.887980757812 0.712861778966 0.788336674948 0.93070380011 切片 切片的使用操作在上面索引部分的基本位置索引中有提到和...0.896107 2017-02-02 12:00:00 0.476584 2017-02-03 00:00:00 0.515817 Freq: 12H, dtype: float64 重复索引的时间序列...我们可以通过时间序列把重复索引对应的值取平均值来解决索引重复的问题: print(ts.groupby(level = 0).mean()) # 通过groupby做分组,重复的值这里用平均值处理 >>
时间序列预测中,我们经常使用的损失函数包括MSE、MAE等。这些损失函数的目标是预测结果和真实值每个点的差距最小。然而这样的点误差损失函数真的适用于所有时间序列预测任务吗?...为了达成这个目标,文中使用了softmax函数。Softmax中传入各个时间点的预测结果和真实结果的距离,只有当所有距离都相同时候,这个函数才会得到最小值。...通过对时间序列进行傅里叶变换,获取预测结果和真实结果的主成分,使用范数对比两个序列的主成分差异作为损失函数,主成分差异越小,对应的loss越小,以此引入了平移不变性。...MSE损失忽略了形状上的差异,而TILDE-Q预测的序列形状和真实结果更加契合。 文中也在Informer、Nbeats、Autoformer等主流时间序列预测模型上,对比了使用不同损失函数的效果。...使用本文提出的损失函数,可以实现MSE这种点误差损失,以及描述形状的DTW等损失同时最小,在不影响传统MSE误差的情况下让模型预测出形状更接近真实序列的结果。 END
因此,自然的想到,当面对适用于时间序列预测的深度学习模型时,后门攻击是否依然可以操纵预测结果? 为了回答这个问题,本文首次全面地定义了时间序列预测的后门攻击范式,并进而提供了对应的双层优化数学模型。...时间序列预测的后门攻击范式 传统的后门攻击针对图像 / 文本分类任务,无论是从数据特性到任务类型都和时间序列预测全然不同。所以传统的后门攻击无法适用于时间序列预测。...时间序列后门攻击目标:被攻击模型在面对干净输入的时候提供正常的预测结果,但是如果输入中包含了触发器(trigger),那么被攻击模型就会输出攻击者预先定义的结果。...这十组数据对于干净模型的学习难度逐步提升。论文作者使用简易的后门攻击(固定的触发器)来分别攻击这十组数据。 结果显示,MAE 越大的数据,后门攻击效果越好(MAE Difference 越低)。...结果显示,BackTime 持续性取得最好的攻击表现(最低的 和 )。 隐蔽性衡量 论文作者使用两种 SOTA 的时间序列异常检测模型来寻找被攻击数据集中的触发器和目标模式。
TsFile 是一种为时间序列数据设计的列存储文件格式,具有先进的压缩技术以最小化存储空间,高吞吐量的读写能力,并与 Apache 项目 Spark 和 Flink 等处理和分析工具深度集成。...它于 2020 年成为 Apache 软件基金会的顶级项目。 “在 TsFile 出现之前,时间序列数据缺乏标准文件格式,导致数据收集和处理复杂化。”...数据按时间维度索引以加速查询性能,实现快速过滤和检索时间序列数据。 在 IoTDB 中,它支持在线事务处理(OLTP)和在线分析处理(OLAP),无需将数据重新加载到不同的存储中。...使用更少的云资源 物联网原生数据模型将设备和传感器的时间序列数据组织成适应延迟数据到达的日志结构合并树,适用于写入密集型工作负载。...“过去,公司通常会以各种用户定义的文件格式编写时间序列数据,缺乏统一性,或者使用通用的列式文件格式,如 [Apache 项目] Parquet 和 ORC,这使得没有标准的数据收集和处理变得复杂。”
01 、介绍 Gin 框架为 JSON、XML 和 HTML 渲染提供了易用的API。 本文我们主要介绍 JSON 的使用方式。...02 、JSON 在 Go 项目开发中,当开发 HTTP API 时,我们通常提供 JSON 格式的返回结果。 Go 框架为 JSON 渲染提供了易用的 API。...,我们可以发现,使用 c.JSON() 方法,即可返回 JSON 格式的返回结果。...03 总结 本文我们介绍 Gin 框架为 JSON 提供的几种易于使用的 API。 gin.H 是 map[string]interface{} 的一种快捷方式。 返回结果也可以使用一个结构体。...": "hey", "Number": 123 } 阅读上面这段代码,我们使用一个结构体,输出 JSON 格式的返回结果。
本文将介绍如何通过python来读取、展现时间序列数据。...读取 时间序列数据一般用cvs等电子表格的形式存储,这里以cvs为例: from dateutil.parser import parse from datetime import datetime...raw.githubusercontent.com/selva86/datasets/master/a10.csv', index_col='Month', # 指定索引列...date_parser=date_parse) # 日期格式解析器 ser .head() 可视化 import matplotlib.pyplot as...本篇介绍了时间序列的一般数据格式和基于python的可视化方法,下一篇将介绍时间序列的分解方法,目的是通过分解出的时间序列的各个成分来进一步的了解时间序列。
Kats是一个用于分析时间序列数据的工具箱,是一个轻量级、易于使用和可推广的框架,用于执行时间序列分析。...时间序列分析是工业数据科学和工程工作的重要组成部分,从理解关键统计数据和特征,检测回归和异常,预测未来趋势。 Kats旨在为时间序列分析提供一站式服务,包括检测、预测、特征提取/嵌入、多元分析等。...一个度量系统的稳态行为是通过使用向量自回归(VAR)模型建模时间序列之间的线性相关性来预测的。...在我们发现的异常时间的情况下,我们可以验证最大的异常分数来自指标5和6。 2.4 Trend detection 趋势检测 趋势检测试图识别时间序列中显著和长期的变化。...趋势窗口是基于窗口内时间序列的增加或减少的单调性来检测的,而不是窗口内时间序列值变化的幅度。
time 当前时间 time.Now() 把时间格式化成字符串(time->string) : time.Now().Format("2006-01-02 15:04:05") 把日期字符串转化为时间...= nil { fmt.Println(err) } fmt.Println(t) unix 时间格式化, 将int转化为时间 //普通unix时间转换 func(timestamp int64...,减,比较 type Duration int64 表示一个持续的时间,单位是纳秒 Add() 加 Sub() 减 Before() 比时间前的一段时间 After() 比时间后的一段时间 package...24小时,即明天的这个时间 d := t2.Sub(t) fmt.Println(t) fmt.Println(t2) fmt.Println(d) if t.Before(t2) { /...*/ } 3.Tick 与 After 有点类似,唯的区别是 After 等待时间到期后,定时器就结束了。Tick 是 每隔一段时间 d 都会向 channel 发送当前时间。
而RobustPCA通过将时间序列矩阵分解为两个组件来解决这个问题:捕获潜在趋势的低秩组件和解释异常值的稀疏组件。...在给定一个时间序列矩阵X, RobustPCA分解可表示为: X = L + S 这里的,L为低秩分量,S为稀疏分量。...RobustPCA使用示例 在Python中,robust_pca包提供了一个易于使用的基于ADMM算法的RobustPCA实现。...下面是一个使用robust_pca包来分解时间序列矩阵X的例子: import numpy as np from robust_pca import RobustPCA # Create a...RobustPCA的应用 鲁棒主成分分析可以应用于广泛的时间序列预测和异常检测任务,包括: 金融市场分析:RobustPCA可用于分析高维金融时间序列数据,如股票价格、交易量和经济指标。
本文介绍了如何使用pandas的重采样函数来识别和填补这些空白。 原始数据 出于演示的目的,我模拟了一些每天的时间序列数据(总共10天的范围),并且设置了一些空白间隙。...初始数据如下: 重采样函数 在pandas中一个强大的时间序列函数是resample函数。这允许我们指定重新采样时间序列的规则。...如果我们在同一粒上调用重采样的话对于识别和填补时间序列数据的空白是非常有用的。例如,我们正在使用的原始数据集并不是每天都有数值。利用下面的重样函数将这些间隙识别为NA值。...在上述操作之后,你可能会猜到它的作用——使用后面的值来填充缺失的数据点。从我们的时间序列的第一天到第2到第4天,你会看到它现在的值是2.0(从10月5日开始)。...总结 有许多方法可以识别和填补时间序列数据中的空白。使用重采样函数是一种用来识别和填充缺失的数据点简单且有效的方法。这可以用于在构建机器学习模型之前准备和清理数据。
所以出现了很多为时间序列数据生成嵌入的方法, Time2Vec 作为与模型无关的时间表示,可用于任何深度学习预测应用程序。Corr2Vec,通过研究它们的相互相关性来提取多个时间序列的嵌入表示。...在这篇文章中,我们尝试在时间序列域中应用 Word2Vec。目标是利用无监督方法(如 Word2Vec)的灵活性来学习有意义的时间序列嵌入。...在每个间隔中关联一个唯一标识符,该标识符指的是可学习的嵌入。 在离散化可以使用的时间序列之前,应该考虑对它们进行缩放。在多变量环境中工作时,这一点尤为重要。...所以需要以统一的方式应用离散化来获得唯一的整数映射。考虑到我们这里使用的是停车数据,所以使用占用率序列(在 0-100 范围内归一化)可以避免误导性学习行为。...每个分箱时间序列的二维嵌入可视化 通过扩展所有时间序列的嵌入表示,我们注意到小时观测和每日观测之间存在明显的分离。 每个时间序列中所有观测数据的二维嵌入可视化 这些可视化证明了本文方法的优点。
我们将使用轮廓分数和一些距离指标来执行时间序列聚类实验,并且进行可视化 让我们看看下面的时间序列: 如果沿着y轴移动序列添加随机噪声,并随机化这些序列,那么它们几乎无法分辨,如下图所示-现在很难将时间序列列分组为簇...把看起来相似的波形分组——它们有相似的形状,但欧几里得距离可能不低 距离度量 一般来说,我们希望根据形状对时间序列进行分组,对于这样的聚类-可能希望使用距离度量,如相关性,这些度量或多或少与波形的线性移位无关...低或负的平均轮廓分数(接近-1)表明重叠或形成不良的集群。 0左右的分数表示该点位于两个簇的边界上。 聚类 现在让我们尝试对时间序列进行分组。...欧几里得距离与相关廓形评分的比较 轮廓分数表明基于相关性的距离矩阵在簇数为4时效果最好,而在欧氏距离的情况下效果就不那么明显了结论 总结 在本文中,我们研究了如何使用欧几里得距离和相关度量执行时间序列聚类...,并观察了这两种情况下的结果如何变化。
在很多时候,还会有非常复杂的实验设计,比如时间序列, 时间序列与不同实验条件同时存在等情况,对于这种类型的差异分析而言,最常见的分析策略就是回归分析,将基因的表达量看做因变量,将时间和实验条件等因素看自变量...maSigPro是一个用于分析时间序列数据的R包,不仅支持只有时间序列的实验设计,也支持时间序列和分组同时存在的复杂设计,网址如下 https://www.bioconductor.org/packages...1. makeDesignMatrix 在分析之前,我们需要提供基因的表达量和样本对应的时间序列,实验分组这两种信息。...对于表达量而言,需要提供归一化之后的表达量,每一行是一个基因,每一列代表一个样本,这种格式在很多软件中都有介绍,这里就不展开了,对于样本的分组信息,格式如下 sample Time Replicate...对于只有时间因素的实验,除了Time和Replicate外,只需要再添加一列就可以了,取值全部为1,意味着所有实验条件相同。
之前专门花了两篇推文来分别介绍两种常用时间序列模型:ETS(指数平滑法)和ARIMA(整合差分移动平均自回归法)的基本原理。本文就进入Power BI的用法篇。...在首次使用上述视觉对象的时候,Power BI会提示下载所需的包(Libraries),用户根据提示一步一步点击即可,无需手动在R上另外安装。...Forecasting TBATS TBATS是季节性ARIMA模型的变体。基本原理跟ARIMA模型相似。这四个预测型视觉对象都只能拖入两个字段:时间字段和序列数值字段。...不建议使用。...可以设置p,d,q和含季节性的P,D,Q参数。也可以开放数据导出的功能。 总结 时间序列预测本身是个复杂而又难以保证效果的工作。
Hi,我是Johngo~ 今儿和大家聊聊关于「使用LSTM模型预测多特征变量的时间序列」的一个简单项目。 使用LSTM模型预测多特征变量的时间序列,能够帮助我们在各种实际应用中进行更准确的预测。...本项目使用Python和TensorFlow/Keras框架来实现一个LSTM模型,对多特征变量的时间序列数据进行预测。 实现流程 数据准备 收集和准备时间序列数据集。 处理缺失值和异常值。...将数据重塑为适合LSTM模型的格式。 构建和训练LSTM模型 使用Keras构建LSTM模型。 编译模型并设置优化器和损失函数。 训练模型并进行验证。 模型评估和预测 评估模型的性能。...使用模型进行未来时间点的预测。 可视化预测结果和实际值。 代码实现 在这个示例中,创建一个模拟的多特征时间序列数据集,并保存为CSV文件以供使用。...然后,大家可以使用生成的CSV文件进行后续的LSTM时间序列预测模型的构建和训练。 完整代码实现 下面是完整的代码实现,包括生成数据集、数据预处理、LSTM模型构建和训练,以及模型评估和预测。 1.
1、如果任务下来了,并且给定了你指定格式的JSON数据类型,那么就要想法封装成此种JSON格式的数据类型,方便其他成员进行调用,那么是如何进行封装的呢,这里简单研究一下子。...2、如果文档指定的封装类型是下面,这样格式的,应该如何进行封装呢?...使用json在线解析,查看是否是正确的json格式。 ? 3、如果文档指定的封装类型是下面,这样格式的,应该如何进行封装呢?...如下所示: 主要根据自己想要的格式进行封装哈。...使用json在线解析,查看是否是正确的json格式。 ? 那么快根据你的文档需求进行JSON封装吧。
这些模型通常很快,并产生非常强的结果,但当存在许多序列时,它们的性能往往会下降。 所以出现了SOFTS:研究人员建议使用基于mlp的STAD模块。由于是基于MLP的,所以训练速度很快。...使用datasetsforecast以所需格式加载数据集,以便使用neuralforecast训练模型,并使用utilsforecast评估模型的性能。...虽然这与soft论文的结果相矛盾,这是因为我们没有进行超参数优化,并且使用了96个时间步长的固定范围。...这个实验的结果可能不太令人印象深刻,我们只在固定预测范围的单个数据集上进行了测试,所以这不是SOFTS性能的稳健基准,同时也说明了SOFTS在使用时可能需要更多的时间来进行超参数的优化。...但是SOFTS的思路还是非常好的,比如使用集中式学习时间序列之间的相互作用,并且使用低强度的计算来保证数据计算的效率,这都是值得我们学习的地方。
Encoder-decoder 模型在序列到序列的自然语言处理任务(如语言翻译等)中提供了最先进的结果。...多步时间序列预测也可以被视为一个 seq2seq 任务,可以使用 encoder-decoder 模型来处理。...本文提供了一个用于解决 Kaggle 时间序列预测任务的 encoder-decoder 模型,并介绍了获得前 10% 结果所涉及的步骤。...模型中使用的滞后特征是前一年的值。使用滞后特征的原因是,鉴于输入序列仅限于 180 天,提供超出此时间的重要数据点将有助于模型。...总结 本文演示了使用Encoder-Decoder 模型创建多步时间序列预测的完整步骤,但是为了达到这个结果(10%),作者还做了超参数调优。
时间序列预测是一个经久不衰的主题,受自然语言处理领域的成功启发,transformer模型也在时间序列预测有了很大的发展。本文可以作为学习使用Transformer 模型的时间序列预测的一个起点。...这个比赛需要预测54家商店中各种产品系列未来16天的销售情况,总共创建1782个时间序列。数据从2013年1月1日至2017年8月15日,目标是预测接下来16天的销售情况。...窗口大小是一个重要的超参数,表示每个训练样本的序列长度。此外,' num_val '表示使用的验证折数,在此上下文中设置为2。...val_series,numeric_covariates,categorical_covariates,categorical_static,target_idx) 数据加载器 在数据加载时,需要将每个时间序列从窗口范围内的随机索引开始划分为时间块...因为是时间序列预测,所以注意力机制中不需要因果关系,也就是没有对注意块应用进行遮蔽。 从输入开始:分类特征通过嵌入层传递,以密集的形式表示它们,然后送到Transformer块。
正文前先来一波福利推荐: 福利一: 百万年薪架构师视频,该视频可以学到很多东西,是本人花钱买的VIP课程,学习消化了一年,为了支持一下女朋友公众号也方便大家学习,共享给大家。...福利二: 毕业答辩以及工作上各种答辩,平时积累了不少精品PPT,现在共享给大家,大大小小加起来有几千套,总有适合你的一款,很多是网上是下载不到。...jobConfig.getKafkaMasterConfig(), (FlinkKafkaPartitioner)null); ConfluentRegistryAvroSerializationSchema 实现自定义序列化方法...: private DoubtEventPreformatDataAvro convert(JSONObject jsonValue){ avro格式的反序列化: FlinkKafkaConsumer09...inputPreformatTopicConsumer); inputPreformatTopicConsumer.setCommitOffsetsOnCheckpoints(true); 自定义实现反序列化的函数
领取专属 10元无门槛券
手把手带您无忧上云