首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

用matplotlib画以时间日期为x轴的图像

分析 ---- 1.效果展示 主要效果就是,x轴 显示时间单位。 下图展示的就是想要到达的效果。 其实主要是运用了datetime.date这个类型的变量作为x轴坐标的数据输入。 ? 2....源码 将data.txt中的数据读入,用matplotlib中的pyplot画出,x轴为时间。 数据文本 data.txt,除了第一行表头外,每一列都用制表符Tab(\t)隔开。...continue #这行明显不是有效信息 data = line.split('\t') time = data[0] # 使用最新日期的数据...= 0: if time == l_time[-1]:#如果这一行时间与上一行的时间相等,删除上一行数据 print('删除上一行:' + time...,将str类型的数据转换为datetime.date类型的数据,作为x坐标 xs = [datetime.strptime(d, '%Y/%m/%d').date() for d in l_time

4K10

Echart图表X轴为时间轴的解释 原

绘制Echart图表,一般情况下x轴type: 'category',但有时候也用到type:  'time', 这两者的主要区别是,当为时间轴时,不需要指定xAxis 对象的data,时间轴显示的Label...是series对象里面的value[0]的日期,value[0]可以是时间戳也可以是“2018-12-5 10:20:30”这种类型,不能是无效的时间格式类型,同样可以格式化Label 例一 <script...function(value, index) { return new Date(value).getFullYear(); value指的是1522306819000这种数据...-4-28 08:03:29", 15] } ]; var data = []; for (i = 0; i < data1.length; i++) { //data.push(data1[x]...name.substring(10, 18); //data[i].value[0]=data1[i].value[0].substring(10,18); //不能设置此行,如果设置此行,导致时间格式有误

8.1K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Matplotlib绘图时x轴标签重叠的解决办法

    在使用Matplotlib画图时,我遇到了一个尴尬的情况,那就是当x轴的标签名字很长的时候,在绘制图形时,发生了x轴标签互相重叠的情况。...示例 import pandas as pd import matplotlib.pyplot as plt # 准备数据 data = {'sport_type':['running', 'walking...在使用上述数据进行绘图的时候,就出现了本文一开始描述的问题,我们可以从柱状图看到,除了第1个x轴标签之外,后面4个都发生了重叠。...但是该方法存在一个很大的问题,那就是当x轴标签数量很多时,那么就无法通过这样的方法进行解决了。...方法四:标签旋转 我们只需要将x轴的标签旋转一定的角度,就可以让其不再发生重叠。

    36.3K51

    matplotlib作图的时候x轴的小数点如何去掉呢?

    一、前言 前几天在Python白银交流群【千葉ほのお】问了一道matplotlib可视化处理的问题,如下图所示。...原始代码,如下所示: import matplotlib.pyplot as plt ages_x = [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] dev_y...,label='开发者年龄与薪资') plt.xlabel('年龄') plt.ylabel('薪资') plt.show() 得到的x轴是浮点数,如下图所示。...开发者年龄与薪资') plt.xlabel('年龄') plt.ylabel('薪资') plt.xticks(ages_x) plt.show() 设置字体为楷体,不加设置字体这行代码,会出现中文加载不出来的情况...这篇文章主要盘点了一道matplotlib作图的问题,文中针对该问题给出了具体的解析和代码实现,帮助粉丝顺利解决了问题。

    1.4K10

    使用 matplotlib 绘制带日期的坐标轴

    使用 matplotlib 绘制带日期的坐标轴 源码及参考链接 效果图 [运行结果] 代码 import numpy as np import matplotlib.pyplot as plt import...matplotlib.dates as mdates fig, ax = plt.subplots() """生成数据""" beginDate = '2012-01-01' endDate =...坐标轴的刻度格式 ax.xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m")) # 设置横坐标轴的范围 datemin = np.datetime64...) """自动调整刻度字符串""" # 自动调整 x 轴的刻度字符串(旋转)使得每个字符串有足够的空间而不重叠 fig.autofmt_xdate() plt.show() 代码中使用到的类简单介绍一下...() 配合设置日期刻度间隔 matplotlib.dates.DateFormatter() 设置日期显示格式 fig.autofmt_xdate() 自动调整坐标轴,未调用字符串会重叠在一起 [未调整字符串

    4.8K00

    MATLAB修改x轴的数值为日期和时间

    后台有一个读者留言matlab修改x轴的数值为日期和时间,故分享一下这个内容 这个问题的关键是需要首先把时间转为matlab对应的datetime格式,然后再用xtickformat方法修改坐标轴数据。...随机生成一些示例数值 使用 plot 函数来绘制这些数据,并设置 x 轴的数据为日期时间格式: % 绘制图形 plot(dates, values, 'o-') % 设置 x 轴为日期时间格式 xlabel...接下来,使用 plot 函数绘制了这些数据,并通过 xlabel 函数设置了 x 轴的标签。...使用 xtickformat 函数将 x 轴刻度格式设置为 yyyy-MM-dd HH:mm,这样 x 轴上的日期时间就会按照指定的格式显示。...读者可以根据实际的日期时间数据和需求来调整代码中的日期时间数组和其他参数。 场景3) 更改带持续时间的 x 轴刻度值。创建 x 轴为持续时间值的图。然后更改刻度线所在的持续时间值。

    72110

    基于 Prophet 的时间序列预测

    预测未来永远是一件让人兴奋而又神奇的事。为此,人们研究了许多时间序列预测模型。然而,大部分的时间序列模型都因为预测的问题过于复杂而效果不理想。...总之,传统的时间序列预测在模型的准确率以及与使用者之间的互动上很难达到理想的融合。...当将s(t)中的所有季节性时间序列模型组合成一个向量X(t),那么最终的季节性模型为: ? 其中, ? ,以此提高季节性模型的平滑性。...因此,该模型不够合理,需要使用者重新设置参数或者对历史数据中的异常点进行预处理。 上述图是growth选择”linear”时的结果,如果认为时间序列呈非线性增长趋势,我们用如下的图例来说明: ?...使用者无需像其他方法那样对剔除的数据进行插值拟合,可以仅保留异常值对应的时间, 并将异常值修改为空值(NA),模型在预测时依然可以给出这个时间点对应的预测结果。

    4.5K103

    数据可视化:Matplotlib的坐标轴管理

    MPL-02:使用Figure与Axes坐标轴管理 作者:杨强,单位:马哥教育讲师 本主题专门讲解Figure的设计结构与Figure对象的应用: 1 Figure对象的创建与相关参数; 2 Figure...fig=plt.figure() fig.show(warn=False) x288 with 0 Axes> pylot的figure函数声明如下: matplotlib.pyplot.figure...坐标轴的删除与添加 可以通过如下函数删除坐标轴。 |-fig.delaxes(ax) 也可以直接添加: |-fig.add_axes(ax) 我们也可以直接使用Axes类构造坐标轴对象。...使用add_subplot添加坐标轴 add_subplot函数本质与上面一样,只是提供了更加灵活的方式。...; |-nrows:坐标轴个数的行数 |-ncols:坐标轴个数的列数 |-index:坐标轴的位置 位置下标从1开始 #coding=utf-8 import matplotlib.pyplot as

    2.5K00

    如何使用 Java 对时间序列数据进行每 x 秒的分组操作?

    在时间序列数据处理中,有时需要对数据按照一定的时间窗口进行分组。本文将介绍如何使用 Java 对时间序列数据进行每 x 秒的分组操作。...图片问题描述假设我们有一组时间序列数据,每个数据点包含时间戳和对应的数值。我们希望将这些数据按照每 x 秒为一个时间窗口进行分组,统计每个时间窗口内的数据。...解决方案下面是一种基于 Java 的解决方案,可以实现对时间序列数据的每 x 秒进行分组。首先,我们需要定义一个数据结构来表示时间序列数据点,包括时间戳和数值。...然后,我们以每 x 秒为一个时间窗口进行循环遍历。在每个时间窗口内,我们遍历所有数据点,将时间戳在当前时间和时间窗口结束时间之间的数据点加入到一个分组中。...Java 对时间序列数据进行每 x 秒的分组。

    31720

    R语言中基于表达数据的时间序列分析

    聚类分析大家应该不陌生,今天给大家介绍一个用于基于时间序列的转录组数据的聚类分析R包Mfuzz。...此包的核心算法是基于模糊c均值聚类(Fuzzy C-Means Clustering,FCM)的软聚类方法,它的特色就是把聚类的特征进行归类,而不是像K-mean一样的样本的聚类。...首先看下包的安装: BiocManager::install('Mfuzz') 接下来我们通过实例来看下包的使用: ##数据载入 data(yeast) ##缺失值的处理 yeast.r <-...filter.NA(yeast, thres=0.25) yeast.f <- fill.NA(yeast.r,mode="mean")#还可以是knn/wknn ##表达水平低或者波动小的数据处理...,需要用下面命令启动: Mfuzzgui() 按照界面中的操作也可以达到数据分析的效果。

    1.2K20

    基于长时间序列栅格数据的MK检验

    MK检验是曼-肯德尔法,又称Mann—Kenddall 检验法,是一种气候诊断与预测技术,应用Mann-Kendall检验法可以判断气候序列中是否存在气候突变,如果存在,可确定出突变发生的时间。...Mann-Kendall检验法也经常用于气候变化影响下的降水、干旱频次趋势检测。目前常用于长时间序列的栅格数据的显著性检验,在植被覆盖度,NDVI,NPP等方面尤为常见。...该检验功能强大,不需要样本遵从一定的分布,部分数据缺失不会对结果造成影响,不受少数异常值的干扰,适用性强。不但可以检验时间序列的变化趋势,还可以检验时间序列是否发生了突变。...首先导入投影信息 info=geotiffinfo('D:\ex\PM25\PM25_2000_year.tif');%首先导入投影信息 [m,n]=size(a); cd=5; %5年,时间跨度...geotiffwrite('D:\ex\MKjianyan\MK检验结果.tif',zc,R,'GeoKeyDirectoryTag',info.GeoTIFFTags.GeoKeyDirectoryTag); %选择合适的路径

    36410

    基于Bootstrap垂直响应的jQuery时间轴特效

    第一个日志是系统自动记录的,每次在这个项目下的操作,比如上传,添加,删除,查阅,下载等都记录在案,方便查阅。 第二个,大事记的时间轴,很流行。 第三个日历日程事件,记录一些非大事记中。...当然,初步考虑还是在日历日程上添加、删除大事记,在添加日历日程事件的时候,提供一个单选按钮:是否作为大事记。如果作为大事记,则时间轴上会显示这个事件。  ...这个时间轴整合了3个模板,一个是timelined;——支持时间轴线上的图标效果。 一个是http://www.jqueryfuns.com/resource/1155——喜欢它设计的版面。...-- 测试时间轴 --> 的数据,或者是拉动滚动条的操作 loadData(); } }) } loadData(); tcScroll(); }); </script

    2.3K40

    基于树模型的时间序列预测实战

    现在,我们将了解一个与经典ARIMA时间序列建模不同的新领域。在监督学习模型中,仅仅使用单变量时间序列似乎信息有限,预测也比较困难。...在这篇文章中,云朵君将和大家一起学习以下内容: 从单变量时间序列中创建特征, 使用提前一步预测的监督学习框架, 建立轻型 GBM 预测模型,并提供模型的可解释性。...感兴趣的伙伴可以自己尝试。 从单变量时间序列中创建特征 在单变量时间序列中,我们只能获得有限的信息。ARIMA 模型使用过去的值来预测未来的值,因此过去的值是重要的候选特征,可以创建许多滞后回归因子。...创建基于时间的特征 创建基于时间的特征,包括日期、星期、季度等各种特征,通过 pandas series 的 "date" 类中提供的一系列函数,我们可以轻松实现这些需求。...结论 在本章中,我们探讨了单变量时间序列特征的创建方法,以及如何将其纳入基于树的监督学习框架中。我们利用 lightGBM 模型进行了一步预测,并展示了如何利用变量显著图提高模型可解释性。

    39710

    基于tensorflow的LSTM 时间序列预测模型

    RNN 递归神经网络(RNN)相对于MLP和CNN的主要优点是,它能够处理序列数据,在传统神经网络或卷积神经网络中,样本(sample)输入与输出是没有“顺序”概念的,可以理解为,如果把输入序列和输出序列重新排布...,在一些特殊任务上,一些变式要优于标准的LSTM 利用LSTM进行时间序列预测 一般在时间序列预测上,常用的方法主要有ARIMA之类的统计分析,机器学习中经典的回归分析等 统计分析中(如ARIMA),将时间序列分为三个部分...这里采用LSTM来进行时间序列预测,结构为: 训练数据生成—>隐藏输入层—>LSTM神经层—>隐藏输出层(全连接层)—>结果 当然,也可以根据任务增加隐藏层,LSTM层以及全连接层的数量。...这里列举几个重要的注意点: 首先要理解什么是序列和序列化数据,比如如果我要预测24小时的天气,那将会有很多种方案,每种方案的序列化都不一样,若模型输出就是24小时的序列,那么输入序列可以是 t-1之前任意长度的序列...总之,每种做法效果不一样,具体问题还需要具体分析; TIME_STEPS参数,可以理解为时间步,就是你需要几个时刻的样本来预测,INPUT_SIZE 为每个样本的维度,如果你的样本数据是一个单一序列,没有其他特征的话

    1.8K30

    基于视觉智能的时间序列基础模型

    ViTime的核心思想是将数值时间序列转换为二值图像,从而将数值时间相关性转化为二值像素空间相关性。这种方法与人脑处理时间序列数据的方式高度契合。...更值得注意的是,只需使用10%的领域数据进行微调,ViTime就能够在性能上超越使用100%领域数据的最新监督模型。...表明基于视觉智能的方法在处理时间序列数据时可能具有根本性的优势,能够捕捉到传统数值方法难以识别的模式和特征。...结果表面,只使用10%的领域特定数据进行微调,ViTime就能够在性能上超越使用100%数据训练的最新监督模型,如PatchTST、SiMBA和TIMESNET等。...作者结论:基于视觉智能的时序模型可能是通往AGI的最佳选择。

    12010

    使用 Pandas resample填补时间序列数据中的空白

    在现实世界中时间序列数据并不总是完全干净的。有些时间点可能会因缺失值产生数据的空白间隙。机器学习模型是不可能处理这些缺失数据的,所以在我们要在数据分析和清理过程中进行缺失值的填充。...本文介绍了如何使用pandas的重采样函数来识别和填补这些空白。 原始数据 出于演示的目的,我模拟了一些每天的时间序列数据(总共10天的范围),并且设置了一些空白间隙。...如果我们在同一粒上调用重采样的话对于识别和填补时间序列数据的空白是非常有用的。例如,我们正在使用的原始数据集并不是每天都有数值。利用下面的重样函数将这些间隙识别为NA值。...在上述操作之后,你可能会猜到它的作用——使用后面的值来填充缺失的数据点。从我们的时间序列的第一天到第2到第4天,你会看到它现在的值是2.0(从10月5日开始)。...总结 有许多方法可以识别和填补时间序列数据中的空白。使用重采样函数是一种用来识别和填充缺失的数据点简单且有效的方法。这可以用于在构建机器学习模型之前准备和清理数据。

    4.4K20

    PatchTST: 基于Transformer的长时间序列预测

    具体来说,它们都是将时间序列分成若干个时间段(Preformer 里用的术语是 segment,本文用的是 patch,实际上是差不多的),每一个时间段视为一个 token(这不同于很多 Transformer-based...最后将向量展平之后输入到一个预测头(Linear Head),得到预测的单变量输出序列。 分 patch(时间段)的好处主要有四点: 1....保持时间序列的局部性,因为时间序列具有很强的局部性,相邻的时刻值很接近,以一个 patch 为 Attention 计算的最小单位显然更合理。 3....1.2 Channel-independence 很多 Transformer-based 模型采用了 channel-mixing 的方式,指的是,对于多元时间序列(相当于多通道信号),直接将时间序列的所有维度形成的向量投影到嵌入空间以混合多个通道的信息...总结 论文最核心的两点,分 patch、通道独立、以及自监督 mask 重建的做法在之前的时间序列相关论文中都已经存在了,所以我认为创新性并不是很强,但是效果不错。

    1.6K20
    领券