首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

梯度是如何计算的

引言 深度学习模型的训练本质上是一个优化问题,而常采用的优化算法是梯度下降法(SGD)。对于SGD算法,最重要的就是如何计算梯度。...此时,估计跟多人会告诉你:采用BP(backpropagation)算法,这没有错,因为神经网络曾经的一大进展就是使用BP算法计算梯度提升训练速度。但是从BP的角度,很多人陷入了推导公式的深渊。...如果你学过微积分,我相信你一定知道如何计算梯度,或者说计算导数。对于深度网络来说,其可以看成多层非线性函数的堆积,即: ?...对于两个矩阵相乘的话,在反向传播时反正是另外一个项与传播过来的梯度项相乘。差别就在于位置以及翻转。这里有个小窍门,就是最后计算出梯度肯定要与原来的矩阵是同样的shape。那么这就容易了,反正组合不多。...,就是如何计算梯度。

2.6K70

对比PyTorch和TensorFlow的自动差异和动态子类化模型

这篇简短的文章重点介绍如何在PyTorch 1.x和TensorFlow 2.x中分别使用带有模块/模型API的动态子类化模型,以及这些框架在训练循环中如何使用AutoDiff获得损失的梯度并从头开始实现...同样,本着眼于自动差异/自动渐变功能核心的目的,我们将使用TF和PyTorch特定的自动差异实现方式实现自定义训练循环,以便为我们的简单线性函数提供渐变并手动优化权重和偏差参数以及临时和朴素的渐变后代优化器...在TensorFlow训练循环中,我们将特别明确地使用GradientTape API来记录模型的正向执行和损失计算,然后从该GradientTape中获得用于优化权重和偏差参数的梯度。...相反,在这种情况下,PyTorch提供了一种更“神奇”的自动渐变方法,隐式捕获了对参数张量的任何操作,并为我们提供了相同的梯度以用于优化权重和偏置参数,而无需使用任何特定的api。...一旦我们有了权重和偏差梯度,就可以在PyTorch和TensorFlow上实现我们的自定义梯度派生方法,就像将权重和偏差参数减去这些梯度乘以恒定的学习率一样简单。

1.2K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    OpenCV计算图像的梯度特征

    计算图像的梯度是在进行图像处理时经常用到的方法,但是这玩意自己手写未免效率低而且容易出错。OpenCV里集成了相应的函数,只不过用的人好像并不多导致我找了半天才找到。姑且记一下以备日后使用。...计算像素梯度的绝对值 这个用到了cv2.magnitude方法,具体用法如下: sobelx=cv2.Sobel(im,cv2.CV_64F,1,0,ksize=3)#1,0表示只在x方向求一阶导数 sobely...Sobel算子分别求x和y方向的梯度,卷积核的大小我设置的是3。...得到的mag就是对应每个像素的梯度矩阵。实际上这也可以算成边缘检测吧。...计算像素梯度的方向 这个用到了cv2.parse方法,具体用法如下: phase= cv2.phase(cv2.Sobel(im,cv2.CV_64F,1,0,ksize=3),cv2.Sobel(im

    83720

    8 | PyTorch中自动计算梯度、使用优化器

    自动计算梯度 上次我们用手动求导计算梯度,可是你别忘了,那个包浆的温度计变换只需要2个参数,而如果有10亿个参数,那用手可是求导不过来啊。不要怕,PyTorch给出了自动求导机制。...在调用backward()的时候,将会把导数累加在叶节点上,如果提前调用backward(),则会再次调用backward(),每个叶节点上的梯度将在上一次迭代中计算的梯度之上累加(求和),这会导致梯度计算的结果出错...PyTorch自动的处理了梯度计算。...就是关于参数更新这块, params -= learning_rate * params.grad 我们这里采用的通过计算梯度,并按照梯度方向更新参数,这个计算称作梯度下降方法,而且是最原始的批量梯度下降方法...接下来让我们使用优化器来实现梯度下降。我们使用了一个叫SGD的优化器,这个称为随机梯度下降,这个方法是每次计算只随机采用一个样本,大大降低了计算成本。

    64720

    Python实现简单的梯度下降计算

    梯度下降是深度学习的精髓,以至于可以说深度学习又可称为gradient learning。 这里以一个简单的回归问题为例。...在初高中时,若想求得极值,则需要先求出该函数的导数。 即另y'= 0,再求得极值。而梯度下降法则是累计将x减去每次得到的导数值,而最优的x*值即为差值最小的值的点。这里的每次迭代即为梯度下降。...因此这里可以引入一个loss(损失)的概念,将方程转化为loss = (y - x**2 * sin(x))**2,这时再对loss进行求导即可使方程转化为求计算梯度求极值的问题。...对预测y值进行迭代计算,总计算值再做平均计算即可算出总误差值。 定义计算误差值的函数。...total_error / float(len(sets)) # 返回累加出的平方和的均值 随后需要对各函数的梯度值进行计算, ?

    1.5K41

    tf.GradientTape详解:梯度求解利器

    tf.GradientTape定义在tensorflow/python/eager/backprop.py文件中,从文件路径也可以大概看出,GradientTape是eager模式下计算梯度用的,而eager...下面就来具体介绍GradientTape的原理和使用。 Tape在英文中是胶带,磁带的含义,用在这里是由于eager模式带来的影响。...但也不能每行都计算一下梯度吧?计算量太大,也没必要。因此,需要一个上下文管理器(context manager)来连接需要计算梯度的函数和变量,方便求解同时也提升效率。...GradientTape默认只监控由tf.Variable创建的traiable=True属性(默认)的变量。上面例子中的x是constant,因此计算梯度需要增加g.watch(x)函数。...对于TensorFlow 2.0,推荐大家使用这种方式计算梯度,并且可以在eager模式下查看具体的梯度值。

    2.4K30

    Tensorflow学习——Eager Execution

    6.自动微分高级内容 动态模型计算梯度的其他函数自定义梯度7.性能 基准8.处理图 编写兼容的代码在图环境中使用EagerExecutionTensorFlow 的 Eager Execution 是一种命令式编程环境...评估、输出和检查张量值不会中断计算梯度的流程。Eager Execution 适合与 NumPy 一起使用。NumPy 操作接受 tf.Tensor 参数。...在 Eager Execution 期间,请使用 tf.GradientTape 跟踪操作以便稍后计算梯度。tf.GradientTape 是一种选择性功能,可在不跟踪时提供最佳性能。...特定的 tf.GradientTape 只能计算一个梯度;随后的调用会引发运行时错误。...tf.GradientTape 是用于计算梯度的强大接口,还有另一种 Autograd 样式 API 可用于自动微分。

    3K20

    使用动量的梯度下降法

    update your weights instead 指数加权平均参考前一篇博客:https://blog.csdn.net/Solo95/article/details/84837217 使用动量的梯度下降法...所以我们引入了指数加权平均来计算梯度的平均值,这会抵消大部分梯度的垂直方向上的摆动,同时保留水平方向上的前进速度,使其更快收敛。...使用动量的梯度下降法,“动量”,来自对它的物理上的解释,相当于在一个碗里丢一个小球,通过赋予小球动量,使其减少在碗壁上的左右摆动,让它更快到达碗底,。 使用动量的梯度下降法计算方法 ?...起始bias修正: 因为我们取vdwv_{dw}vdw​和vdbv_{db}vdb​为零,所以一开始计算出的vdwv_{dw}vdw​和vdbv_{db}vdb​将会小于实际值,为了修正起始阶段这个偏差...,使用以下计算方法: vdw=vdw1−βtv_{dw}=\frac{v_{dw}}{1-\beta^t}vdw​=1−βtvdw​​ vdb=vdb1−βtv_{db}=\frac{v_{db}}

    68820

    扩展之Tensorflow2.0 | 20 TF2的eager模式与求导

    2 TF1.0 vs TF2.0 TF1.0中加入要计算梯度,是只能构建静态计算图的。 是先构建计算流程; 然后开始起一个会话对象; 把数据放到这个静态的数据图中。 整个流程非常的繁琐。...这样的构建方法,和PyTorch是非常类似的。 3 获取导数/梯度 假如我们使用的是PyTorch,那么我们如何得到 的导数呢?...10; 对于参与计算梯度、也就是参与梯度下降的变量,是需要用tf.Varaible来定义的; 不管是变量还是输入数据,都要求是浮点数float,如果是整数的话会报错,并且梯度计算输出None; ?...一个摄影带,把计算的过程录下来,然后进行求导操作 现在我们不仅要输出w的梯度,还要输出b的梯度,我们把上面的代码改成: import tensorflow as tf x = tf.convert_to_tensor...这个错误翻译过来就是一个non-persistent的录像带,只能被要求计算一次梯度。 我们用tape计算了w的梯度,然后这个tape清空了数据,所有我们不能再计算b的梯度。

    1.9K21

    Tensorflow Eager Execution入门指南

    本文介绍了最新版的Tensorflow 1.7的功能及其使用方法,重点介绍其中最有趣的功能之一eager_execution,它许用户在不创建静态图的情况下运行tensorflow代码。...本文给出了使用eager_execution的步骤及一些注意事项,并不涉及理论知识,如果您已经对Tensorflow有所了解,那么可以阅读以下本文,它能指导您使用这个有趣的功能:使用Eager Execution...,你可以在没有session的情况下运行你的代码使用您自己的functions轻松解决梯度计算支持将数据库里的数据读成用于实验的数据集对TensorRT的初始支持,以便您可以优化您的模型最有趣的功能之一是...我们可以使用迭代器访问数据集中的数据来进行批处理。?我们使用GradientTape记录所有操作以便稍后应用于梯度更新。?grad()函数返回关于权重和偏差的损失的导数。...然后将此传递给optimizer.apply_gradients()完成梯度下降的过程。除了上述变化外,几乎所有东西都保持不变。

    66420

    TensorFlow2.X学习笔记(1)--TensorFlow核心概念

    使用动态计算图的缺点是运行效率相对会低一些。因为使用动态图会有许多次Python进程和TensorFlow的C++进程之间的通信。...而静态计算图构建完成之后几乎全部在TensorFlow内核上使用C++代码执行,效率更高。此外静态图会对计算步骤进行一定的优化,剪去和结果无关的计算步骤。...使用tf.function构建静态图的方式叫做 Autograph. (1)静态计算图 python #在TensorFlow1.0中,使用静态计算图分两步,第一步定义计算图,第二步在会话中执行计算图。...,求梯度过程通常是一件非常复杂而容易出错的事情。...而深度学习框架可以帮助我们自动地完成这种求梯度运算。Tensorflow一般使用梯度磁带tf.GradientTape来记录正向运算过程,然后反播磁带自动得到梯度值。

    92610

    机器学习入门 6-8 如何确定梯度计算的准确性 调试梯度下降

    本小节主要介绍梯度的调试,应用梯度下降法最主要的就是计算梯度,但很有可能计算梯度程序没有错但是求得的梯度是错误的,这个时候就需要使用梯度调试的方式来发现错误。...当然了这种计算梯度的方法同样适用于高维的场景: ? ? 以此类推,对每一个维度都使用上面的方式进行求解。...这个例子告诉我们两件事情: dJ_dubug这种求梯度的方法是可以的,最终能够得到正确的结果; 当我们使用dJ_dubug的时候最终训练的速度会慢很多; 所以如果机器学习算法涉及到梯度的求法的时候,我们完全可以通过这种调试梯度的方式来验证我们推导梯度计算的数学解是否正确...: 先使用dJ_dubug这个函数作为梯度的求法,通过这个方式先得到机器学习算法正确的结果; 然后推导公式求出来这个梯度计算相应的数学解; 之后将我们实现的数学解代入机器学习算法中,可以通过最终得到的结果和使用...def dJ_debug(theta, X_b, y, epsilon = 0.01): """使用调试梯度的方式计算梯度""" res = np.empty(len(theta))

    94000

    推动边缘计算的七项核心技术

    本文为第二篇《推动边缘计算的七项核心技术》。 推动边缘计算的七项核心技术 计算模型的创新带来的是技术的升级换代,而边缘计算的迅速发展也得益于技术的进步。...本节总结了推动边缘计算发展的7项核心技术,它们包括网络、隔离技术、体系结构、边缘操作系统、算法执行框架、数据处理平台以及安全和隐私。...异构硬件牺牲了部分通用计算能力,使用专用加速单元减小了某一类或多类负载的执行时间,并且显著提高了性能功耗比。...,使用异构多核的结构并行处理 深度学习任务和普通的计算任务(实时操作系统)....同时,近些年也有些新兴的安全技术(如硬件协助的可信执行环境)可以使用到边缘计算中,以增强边缘计算的安全性。此外,使用机器学习来增强系统的安全防护也是一个较好的方案。

    93731

    【盘点】云计算的8项核心技术

    它把应用系统各硬件间的物理划分打破,从而实现架构的动态化,实现物理资源的集中管理和使用。虚拟化的最大好处是增强系统的弹性和灵活性,降低成本、改进服务、提高资源利用效率。...云计算项目中分布式并行编程模式将被广泛采用。 分布式并行编程模式创立的初衷是更高效地利用软、硬件资源,让用户更快速、更简单地使用应用或服务。...因此,分布式资源管理技术的重要性可想而知。 全球各大云计算方案/服务提供商们都在积极开展相关技术的研发工作。其中Google内部使用的Borg技术很受业内称道。...数据显示,32%已经使用云计算的组织和45%尚未使用云计算的组织的ICT管理将云安全作为进一步部署云的最大障碍。因此,要想保证云计算能够长期稳定、快速发展,安全是首要需要解决的问题。...CarbonDisclosureProject(碳排放披露项目,简称CDP)近日发布了一项有关云计算有助于减少碳排放的研究报告。

    7.2K60

    前向和反向传播计算量差异;梯度计算和矩阵运算之间的计算量差异

    输入数据的差异三、计算操作的复杂性四、反向传播算法的实现梯度计算和矩阵运算之间的计算量差异矩阵运算梯度计算举例说明前向和反向传播计算量差异前向:矩阵运算和非线性激活函数反向传播:计算大量的梯度和进行参数更新这种差异主要源于以下几个因素...因此,梯度计算的计算量通常比单纯的矩阵运算更为复杂。然而,需要注意的是,梯度计算的计算量并不总是比矩阵运算更大。这取决于具体的计算场景和模型的架构。...在某些情况下,梯度计算可能涉及更少的计算量,尤其是当使用高效的自动微分库(如PyTorch或TensorFlow)时,这些库可以优化梯度计算的过程,减少不必要的计算。...举例说明假设我们有一个简单的Transformer层,其中包含一个自注意力机制和一个前馈神经网络。在这个层中,我们使用了一个s×d的输入矩阵X,并进行了以下计算:计算查询矩阵Q、键矩阵K和值矩阵V。...它们之间的计算量差异取决于多种因素,包括模型的规模、数据的分布、具体的运算类型以及所使用的深度学习框架等。

    16521
    领券