首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用C++计算一棵树最深叶子的总和的程序

使用C++计算一棵树最深叶子的总和的程序可以按照以下步骤实现:

Step 1: 定义树的节点结构 首先,我们需要定义一个表示树节点的结构,包括值和指向子节点的指针。

代码语言:txt
复制
struct TreeNode {
    int value;
    TreeNode* left;
    TreeNode* right;
};

Step 2: 构建树 我们可以使用该结构来构建一棵树。这里以简单的二叉树为例,通过手动创建节点并链接它们。

代码语言:txt
复制
// 创建节点
TreeNode* createNode(int value) {
    TreeNode* node = new TreeNode();
    node->value = value;
    node->left = nullptr;
    node->right = nullptr;
    return node;
}

// 构建树
void buildTree() {
    TreeNode* root = createNode(1);
    root->left = createNode(2);
    root->right = createNode(3);
    root->left->left = createNode(4);
    root->left->right = createNode(5);
    // ... 可以继续添加节点构建更复杂的树
}

Step 3: 计算最深叶子的总和 为了计算最深叶子的总和,我们可以使用递归方法遍历整个树。对于每个节点,我们记录它的深度并更新最大深度和对应的叶子节点的总和。

代码语言:txt
复制
int maxDepth = 0; // 最大深度
int sumOfDeepestLeaves = 0; // 最深叶子的总和

void calculateSum(TreeNode* node, int depth) {
    if (node == nullptr) return;
    
    // 更新最大深度
    if (depth > maxDepth) {
        maxDepth = depth;
        sumOfDeepestLeaves = 0; // 重置最深叶子的总和
    }
    
    // 如果当前节点是叶子节点并且深度与最大深度相等,则将其值加到最深叶子的总和中
    if (node->left == nullptr && node->right == nullptr && depth == maxDepth) {
        sumOfDeepestLeaves += node->value;
    }
    
    // 递归处理左右子节点
    calculateSum(node->left, depth + 1);
    calculateSum(node->right, depth + 1);
}

// 调用该函数计算最深叶子的总和
void calculateDeepestLeavesSum(TreeNode* root) {
    maxDepth = 0;
    sumOfDeepestLeaves = 0;
    calculateSum(root, 0);
    // 输出结果
    cout << "最深叶子的总和为:" << sumOfDeepestLeaves << endl;
}

Step 4: 测试程序 最后,我们可以使用一个简单的测试函数来验证上述程序的正确性。

代码语言:txt
复制
void test() {
    TreeNode* root = createNode(1);
    root->left = createNode(2);
    root->right = createNode(3);
    root->left->left = createNode(4);
    root->left->right = createNode(5);
    
    calculateDeepestLeavesSum(root);
}

这是一个计算一棵树最深叶子的总和的C++程序。在使用前,请确保你已正确引入必要的头文件,并根据实际需要修改和扩展代码。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

  • 期末复习之数据结构 第6章 树和二叉树

    答:最快方法:用叶子数=[n/2]=350 5. 设一棵完全二叉树具有1000个结点,则此完全二叉树有 500 个叶子结点,有 499 个度为2的结点,有 1 个结点只有非空左子树,有 0 个结点只有非空右子树。 答:最快方法:用叶子数=[n/2]=500 ,n2=n0-1=499。 另外,最后一结点为2i属于左叶子,右叶子是空的,所以有1个非空左子树。完全二叉树的特点决定不可能有左空右不空的情况,所以非空右子树数=0. 6. 一棵含有n个结点的k叉树,可能达到的最大深度为 n ,最小深度为 2 。 答:当k=1(单叉树)时应该最深,深度=n(层);当k=n-1(n-1叉树)时应该最浅,深度=2(层),但不包括n=0或1时的特例情况。教材答案是“完全k叉树”,未定量。) 7. 二叉树的基本组成部分是:根(N)、左子树(L)和右子树(R)。因而二叉树的遍历次序有六种。最常用的是三种:前序法(即按N L R次序),后序法(即按 L R N 次序)和中序法(也称对称序法,即按L N R次序)。这三种方法相互之间有关联。若已知一棵二叉树的前序序列是BEFCGDH,中序序列是FEBGCHD,则它的后序序列必是 F E G H D C B 。 8.中序遍历的递归算法平均空间复杂度为 O(n) 。 答:即递归最大嵌套层数,即栈的占用单元数。精确值应为树的深度k+1,包括叶子的空域也递归了一次。 9. 用5个权值{3, 2, 4, 5, 1}构造的哈夫曼(Huffman)树的带权路径长度是 33 。 三、单项选择题 ( C )1. 不含任何结点的空树 。 (A)是一棵树; (B)是一棵二叉树; (C)是一棵树也是一棵二叉树; (D)既不是树也不是二叉树 答:以前的标答是B,因为那时树的定义是n≥1 ( C )2.二叉树是非线性数据结构,所以 。 (A)它不能用顺序存储结构存储; (B)它不能用链式存储结构存储; (C)顺序存储结构和链式存储结构都能存储; (D)顺序存储结构和链式存储结构都不能使用 ( C )3. 〖01年计算机研题〗 具有n(n>0)个结点的完全二叉树的深度为 。 (A) élog2(n)ù (B) ë log2(n)û (C) ë log2(n) û+1 (D) élog2(n)+1ù 注1:éx ù表示不小于x的最小整数;ë xû表示不大于x的最大整数,它们与[ ]含义不同! 注2:选(A)是错误的。例如当n为2的整数幂时就会少算一层。似乎ë log2(n) +1û是对的? ( A )4.把一棵树转换为二叉树后,这棵二叉树的形态是 。 (A)唯一的 (B)有多种 (C)有多种,但根结点都没有左孩子 (D)有多种,但根结点都没有右孩子 5. 从供选择的答案中,选出应填入下面叙述 ? 内的最确切的解答,把相应编号写在答卷的对应栏内。 树是结点的有限集合,它A 根结点,记为T。其余的结点分成为m(m≥0)个 B 的集合T1,T2,…,Tm,每个集合又都是树,此时结点T称为Ti的父结点,Ti称为T的子结点(1≤i≤m)。一个结点的子结点个数为该结点的 C 。 供选择的答案 A: ①有0个或1个 ②有0个或多个 ③有且只有1个 ④有1个或1个以上 B: ①互不相交 ② 允许相交 ③ 允许叶结点相交 ④ 允许树枝结点相交 C: ①权 ② 维数 ③ 次数(或度) ④ 序 答案:ABC=1,1,3 6. 从供选择的答案中,选出应填入下面叙述 ? 内的最确切的解答,把相应编号写在答卷的对应栏内。 二叉树 A 。在完全的二叉树中,若一个结点没有 B ,则它必定是叶结点。每棵树都能惟一地转换成与它对应的二叉树。由树转换成的二叉树里,一个结点N的左子女是N在原树里对应结点的 C ,而N的右子女是它在原树里对应结点的 D 。 供选择的答案 A: ①是特殊的树 ②不是树的特殊形式 ③是两棵树的总称 ④有是只有二个根结点的树形结构 B: ①左子结点 ② 右子结点 ③ 左子结点或者没有右子结点 ④ 兄弟 C~D: ①最左子结点 ② 最右子结点 ③ 最邻近的右兄弟 ④ 最邻近的左兄弟 ⑤ 最左的兄弟 ⑥ 最右的兄弟 答案:A= B= C= D= 答案:ABCDE=2,1,1,3 四

    02

    机器学习之随机森林(R)randomFordom算法案例

    随机森林,指的是利用多棵树对样本进行训练并预测的一种分类器。该分类器最早由Leo Breiman和Adele Cutler提出,并被注册成了商标。简单来说,随机森林就是由多棵CART(Classification And Regression Tree)构成的。对于每棵树,它们使用的训练集是从总的训练集中有放回采样出来的,这意味着,总的训练集中的有些样本可能多次出现在一棵树的训练集中,也可能从未出现在一棵树的训练集中。在训练每棵树的节点时,使用的特征是从所有特征中按照一定比例随机地无放回的抽取的,根据Leo Breiman的建议,假设总的特征数量为M,这个比例可以是sqrt(M),1/2sqrt(M),2sqrt(M)。

    07

    GBDT分解形式理解,整理中2018-5-10

    GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案。它在被提出之初就和SVM一起被认为是泛化能力(generalization)较强的算法。近些年更因为被用于搜索排序的机器学习模型而引起大家关注。 GBDT的思想可以用一个通俗的例子解释,假如有个人30岁,我们首先用20岁去拟合,发现损失有10岁,这时我们用6岁去拟合剩下的损失,发现差距还有4岁,第三轮我们用3岁拟合剩下的差距,差距就只有一岁了。如果我们的迭代轮数还没有完,可以继续迭代下面,每一轮迭代,拟合的岁数误差都会减小。

    05
    领券