首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python之numpy的ndarray数组使用方法介绍

NumPy介绍 NumPy的全名为Numeric Python,是一个开源的Python科学计算库,它包括: (1)一个强大的N维数组对象ndrray; (2)比较成熟的(广播)函数库; (3)用于整合...C/C++和Fortran代码的工具包; (4)实用的线性代数、傅里叶变换和随机数生成函数 主要优点: 1.NumPy数组在数值运算方面的效率优于Python提供的list容器。...2.使用NumPy可以在代码中省去很多循环语句,因此其代码比等价的Python代码更为简洁。...def test1(): # 通过python的list来构建numpy array list1 = [[1, 2, 3]] list2 = [[1], [2], [3]]...# 通过python的 tuple来构造 tuple3= [(1,2,3)] # 使用array方法构造 nd1 = np.array(list1) nd2 = np.array

1K30
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    NumPy中的广播:对不同形状的数组进行操作

    NumPy是用于Python的科学计算库。它是数据科学领域中许多其他库(例如Pandas)的基础。 在机器学习领域,无论原始数据采用哪种格式,都必须将其转换为数字数组以进行计算和分析。...广播描述了在算术运算期间如何处理具有不同形状的数组。我们将通过示例来理解和练习广播的细节。 我们首先需要提到数组的一些结构特性。...图中所示的拉伸只是概念上的。NumPy实际上并不对标量进行复制,以匹配数组的大小。相反,在加法中使用原始标量值。因此,广播操作在内存和计算方面非常高效。 我们还可以对高维数组和一个标量进行加法操作。...如果特定维度的大小与其他数组不同,则必须为1。 如果我们将这三个数组加在一起,则结果数组的形状将为(2,3,4),因为广播的尺寸为1的尺寸与该尺寸中的最大尺寸匹配。...print((A + B + C).shape) (2, 3, 4) 最后做一个简单总结 我们介绍了NumPy中广播的想法。使用数组执行算术计算时,它提供了灵活性。

    3K20

    python的NumPy使用

    参考链接: Python中的numpy.compress Numpy 的主要用途是以数组的形式进行数据操作。 机器学习中大多数操作都是数学操作,而 Numpy 使这些操作变得简单!...1、导库  使用numpy只需要在使用之前导入它的库:  import numpy as np 2、创建数组  我们可以用numpy来创建一系列的数组:  ### 通过直接给出的数据创建数组,可以使用...  ### 这些都是可以使用的 Numpy 数据类型 np.int64 # 有符号 64 位 int 类型 np.float32 # 标准双精度浮点类型 np.complex # 由128位的浮点数组成的复数类型...np.bool # TRUE 和 FALSE 的 bool 类型 np.object # Python 中的 object 类型 np.string # 固定长度的 string 类型 np.unicode...# 固定长度的 unicode 类型 ### Numpy 数组可以像算数那样直接比较 a = np.array([1, 2, 3]) b = np.array([5, 4, 3]) # 如果直接比较会得到每一个元素的

    1.8K00

    Python矩阵和Numpy数组的那些事儿

    今天给大家介绍矩阵和NumPy数组。 一、什么是矩阵? 使用嵌套列表和NumPy包的Python矩阵。矩阵是一种二维数据结构,其中数字按行和列排列。 二、Python矩阵 1....什么是NumPy? NumPy是用于科学计算的软件包,它支持强大的N维数组对象。 在使用NumPy之前,需要先安装它。 2. 如何安装NumPy?...在编写这些程序之前,使用了嵌套列表。让看看如何使用NumPy数组完成相同的任务。 两种矩阵的加法 使用+运算符将两个NumPy矩阵的对应元素相加。...六、总结 本文基于Python基础,介绍了矩阵和NumPy数组,重点介绍了NumPy数组,如何去安装NumPy模块,如何去创建一个NumPy数组的两种方式。...通过案例的分析,代码的演示,运行效果图的展示,使用Python语言,能够让读者更好的理解。 读者可以根据文章内容,自己实现。

    2.4K20

    Python的numpy库使用

    参考链接: Python中的numpy.isinf 代码部分如下所示:  import numpy as np import matplotlib.pyplot as plt # # 1.基本初等函数...# 检查ndarray中的元素是否等于后面后面数组中的一个,返回布尔型 np.diag(a)                  # 以一维数组的形式返回对角线的值 np.diag([1, 3, 5, 9...],[5,6,790]])  # 去除重复元素只与第一个数组有关,然后进行排序 np.setdiff1d(b,a) np.setxor1d(a,b)            # 去除两个数组的交叉项然后进行排序...])      # 将数组的小鼠和整数部分用两个独立的数组行式返回 np.logical_not(a)           # 计算个元素not x 的真值,即-ndarray # # 5.判断 np.isnan...(a)            # 返回一个判断是否是NaN的bool型数组 np.isfinite(a)         # 返回一个判断是否是有穷的bool数组 np.isinf(a)

    98430

    【Python科学计算】使用NumPy水平组合数组和垂直组合数组

    数组A 0 1 2 3 4 5 数组B 6 7 8 4 1 5 现在使用hstack函数将两个数组水平组合的代码如下。 hstack(A,B) hstack函数的返回值就是组合后的结果。...下面的例子通过reshape方法以及乘法运行创建了3个二维数组(行数相同),然后使用hstack函数水平组合其中的两个或三个数组。...数组A 0 1 2 3 4 5 数组B 6 7 8 4 1 5 现在使用vstack函数将两个数组垂直组合的代码如下。 vstack(A,B) vstack函数的返回值就是组合后的结果。...0 1 2 3 4 5 6 7 8 4 1 5 下面的例子通过reshape方法以及乘法运行创建了3个二维数组(行数相同),然后使用hstack函数水平组合其中的两个或三个数组。...图2 垂直组合数组 - EOF - 推荐阅读 点击标题可跳转 卧槽,好强大的魔法,竟能让Python支持方法重载 Python装饰器(decorator)不过如此,是我想多了 这样合并Python字典

    1.4K30

    python笔记之NUMPY中的掩码数组numpy.ma.mask

    参考链接: Python中的numpy.asmatrix python科学计算_numpy_线性代数/掩码数组/内存映射数组   1....线性代数   numpy对于多维数组的运算在默认情况下并不使用矩阵运算,进行矩阵运算可以通过matrix对象或者矩阵函数来进行;   matrix对象由matrix类创建,其四则运算都默认采用矩阵运算,...;对于多维数组,计算的结果数组中的每个元素是:数组a和b最后一维的内积,因此a和b的最后一>维长度必须相同:   inner(a,b)[i,j,k,m] = sum(a[i,j,:]*b[k,m,:])...()传入两个参数数组,a为N*N的二维数组,b为长度为N的一维数组,满足 : a * x = b,解得x矩阵即是N元一次方程的解;   np.linalg.lstsq()传入的参数数组不要求a数组为正方形...;如果一次性保存多个数组,则可以使用savez(),savez()函数的第一个参数是文件名,其后的参数都是需要保存的数组,也可以使用关键字参数为数组起名字,非关键字参数数组则会自动命名为arr_0、arr

    3.5K00

    VBA技巧:使用数组复制不同的列

    标签:VBA,Evaluate方法 假设我们只想复制工作表中指定列的数据,例如第1、2、5列的数据,有多种实现方法,这里介绍使用数组的VBA代码实现。...数组和行都是固定的。如何针对不同的行使其成为动态的?为了涵盖数据集,假设在声明lRow变量后,数组(ar)可以是: ar=Range(“A1:F”& lRow) 但如何对行执行此操作?...可以利用Excel的Evaluate功能来生成灵活的行和列组合。VBA的rows.count命令可以确定区域内数据的终点,并存储该区域,以便在Index公式中使用。...,但有一个优点,即灵活地基于列的长度。...你可以根据实际数据范围和要复制的列,稍微修改上述代码,以满足你的需要。

    2.8K20

    手撕numpy(一):简单说明和创建数组的不同方式​​​​​

    最近给大家更新一波python的基础知识,这次带来的是手撕numpy系列。 1、numpy的简介 numpy是"Numerical Python"的简称。...最终python通过集成C和C++,最终解决这个问题,也就是说:底层运行的是C和C++的代码,但是上层使用的是python语言去写的。这就是我们为什么都喜欢使用"numpy库"的原因。...2、学习numpy的套路 学习怎么使用numpy组织数据(怎么创建出,你想要的不同维度,不同形状的数组):numpy提供了一个高性能的多维数组对象:ndarray。...ndarray数组中存储的所有的元素的类型,都必须一致。 ② 使用numpy创建数组和使用原生list的效率对比 ?...6、创建数组的几种不同方式 1)利用array()函数去创建数组; 操作如下 import numpy as np array1 = [1,2,3] m = np.array(array1) display

    67920

    Python开发之numpy的使用

    一、注意几点 NumPy 数组在创建时有固定的大小,不同于Python列表(可以动态增长)。更改ndarray的大小将创建一个新的数组并删除原始数据。...数组的元素如果也是数组(可以是 Python 的原生 array,也可以是 ndarray)的情况下,则构成了多维数组。 NumPy 数组便于对大量数据进行高级数学和其他类型的操作。...通常,这样的操作比使用Python的内置序列可能更有效和更少的代码执行。...二、numpy的使用 1、创建ndarray 由python list创建python # 1维数组 a = np.array([1, 2, 3]) print(type(a), a.shape...Code 相同的是: 二者都可以使用参数axis来决定依照哪个轴进行排序,axis = 0时按照列排序,axis = 1时按照行排序; 不同的是: np.sort()不会更改原数组;ndarray.sort

    1.4K20

    Python数据分析(4)-numpy数组的属性操作

    numpy数组也就是ndarray,它的本质是一个对象,那么一定具有一些对象描述的属性,同时,它还有元素,其元素也有一些属性。本节主要介绍ndarray以及其元素的属性和属性的操作。...---- 1. ndarray的属性 ndarray有两个属性:维度(ndim)和每个维度的大小shape(也就是每个维度元素的个数) import numpy as np a = np.arange...3 数组维度的大小 (2, 3, 4) 对于ndarray数组的属性的操作只能操作其shape,也就是每个维度的个数,同时也就改变了维度(shape是一个元组,它的长度就是维度(ndim)),下面介绍两种改变数组...shape的方式: import numpy as np a = np.arange(24) a.shape=(2,3,4) # a.shape=(4,6),直接对a进行操作 a.shape = (...import numpy as np a = np.arange(24) a.shape=(2,3,4) print('元素的类型',a.dtype) # 对dtype直接复制是直接在原数组上修改的方式

    1.2K30

    Python Numpy数组处理中的split与hsplit应用

    在数据分析和处理过程中,数组的分割操作常常是需要掌握的技巧。Python的Numpy库不仅提供了强大的数组处理功能,还提供了丰富的数组分割方法,包括split和hsplit。...这些函数根据不同的需求将数组划分为多个子数组,以便进一步处理或分析。 为什么需要分割数组? 数组分割在数据预处理、特征工程、机器学习和科学计算等领域非常常见。...使用split函数进行数组分割 numpy.split()是Numpy中的基础数组分割函数,可以沿指定轴将一个数组划分为若干等份。通过指定分割的次数或者位置来控制分割的方式。...每个子数组的元素数量相等。如果数组不能被均匀分割,Numpy会抛出错误。因此,需要确保原始数组的长度能够被分割的数量整除。...第一个子数组包含前两个元素,第二个子数组包含第三和第四个元素,最后一个子数组包含剩余的元素。 使用hsplit进行水平分割 hsplit()是Numpy中专门用于水平分割的函数。

    19410

    numpy线性代数基础 - Python和MATLAB矩阵处理的不同

    二、MATLAB的处理   1.建立矩阵   MATLAB中,矩阵是默认的数据类型。它把向量看做1×N或者N×1的矩阵。   %建立了一个行向量,不同元素之间使用空格或者逗号分开都是可以的。   ...比如,X是一个3*5的矩阵,p=size(X)返回p=[3 5]   length()   %对于矢量,返回的是矢量的长度;对数组,返回的是数组最长的那一个维度的长度。   ...使用这个包,需要导入numpy。SciPy包以NumPy包为基础,大大的扩展了numpy的能力。...以下默认已经:import numpy as np 以及 impor scipy as sp   下面简要介绍Python和MATLAB处理数学问题的几个不同点。...在numpy中,也有一个计算矩阵的函数:funm(A,func)。   5.索引   numpy中的数组索引形式和Python是一致的。

    1.6K00

    Python Numpy布尔数组在数据分析中的应用

    在数据分析和科学计算中,布尔数组是一个非常重要的工具,它可以帮助我们进行数据的筛选、过滤和条件判断。Python的Numpy库提供了丰富的布尔运算功能,能够高效地对数据进行处理。...本文将深入探讨Numpy中的布尔数组,介绍布尔运算和布尔索引的使用方法,并通过具体的示例代码展示其在实际应用中的强大功能。...Numpy中的布尔运算 Numpy中的布尔运算包括与运算、或运算、非运算等。这些运算可以用于布尔数组之间的操作,也可以与其他数组结合使用,以实现复杂的数据筛选和操作。...Numpy中的 where 函数与布尔数组 Numpy的 where 函数是一个非常灵活的工具,基于条件返回数组中的元素或替换数组中的元素。...通过本文的介绍和示例代码,详细探讨了如何使用这些功能处理一维数组和多维矩阵,希望能够帮助大家在实际的数据分析和科学计算中更好地应用Numpy的布尔操作。

    15610
    领券