首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

如何使用Excel将某几列有值的标题显示到新列中

如果我们有好几列有内容,而我们希望在新列中将有内容的列的标题显示出来,那么我们怎么做呢? Excel - TEXTJOIN function 1....- - - - 4 - - - 在开始,我们曾经使用INDEX + MATCH的方式,但是没有成功,一直是N/A https://superuser.com/questions/1300246/if-cell-contains-value-then-column-header...所以我们后来改为TEXTJOIN函数,他可以显示值,也可以显示值的标题,还可以多个列有值的时候同时显示。...- - 4 - - - 15 Year 5 - - - - 5 - - - =TEXTJOIN(", ",TRUE,IF(ISNUMBER(B2:I2),$B$1:$I$1,"")) 如果是想要显示值,...则: =TEXTJOIN(", ",TRUE,IF(ISNUMBER(B2:I2),B2:I2,"")) 其中,ISNUMBER(B2:I2)是判断值是不是数字,可以根据情况改成是不是空白ISBLANK

11.3K40

python df 列替换_如何用Python做数据分析,没有比这篇文章更详细的了(图文详情)...

中查看空值的方法是使用“定位条件”功能对数据表中的空值进行定位。...对于空值的处理方式有很多种,可以直接删除包含空值的数据,也可以对空值进行填充,比如用 0 填充或者用均值填充。还可以根据不同字段的逻辑对空值进行推算。  ...查找和替换空值  Python 中处理空值的方法比较灵活,可以使用 Dropna 函数用来删除数据表中包含空值的数据,也可以使用 fillna 函数对空值进行填充。...1#使用数字 0 填充数据表中空值  2df.fillna(value=0)  我们选择填充的方式来处理空值,使用 price 列的均值来填充 NA 字段,同样使用 fillna 函数,在要填充的数值中使用...这部分主要使用三个函数,loc,iloc 和 ix,loc 函数按标签值进行提取,iloc 按位置进行提取,ix 可以同时按标签和位置进行提取。下面介绍每一种函数的使用方法。

4.5K00
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    从Excel到Python:最常用的36个Pandas函数

    Isnull是Python中检验空值的函数 #检查数据空值 df.isnull() ? #检查特定列空值 df['price'].isnull() ?...1.处理空值(删除或填充) Excel中可以通过“查找和替换”功能对空值进行处理 ?...Python中处理空值的方法比较灵活,可以使用 Dropna函数用来删除数据表中包含空值的数据,也可以使用fillna函数对空值进行填充。...也可以使用数字对空值进行填充 #使用数字0填充数据表中空值 df.fillna(value=0) 使用price列的均值来填充NA字段,同样使用fillna函数,在要填充的数值中使用mean函数先计算price...4.数据分组 Excel中可以通过VLOOKUP函数进行近似匹配来完成对数值的分组,或者使用“数据透视表”来完成分组 Python中使用Where函数用来对数据进行判断和分组 #如果price列的值>3000

    11.5K31

    python数据科学系列:pandas入门详细教程

    需注意对空值的界定:即None或numpy.nan才算空值,而空字符串、空列表等则不属于空值;类似地,notna和notnull则用于判断是否非空 填充空值,fillna,按一定策略对空值进行填充,如常数填充...、向前/向后填充等,也可通过inplace参数确定是否本地更改 删除空值,dropna,删除存在空值的整行或整列,可通过axis设置,也包括inplace参数 重复值 检测重复值,duplicated,...count、value_counts,前者既适用于series也适用于dataframe,用于按列统计个数,实现忽略空值后的计数;而value_counts则仅适用于series,执行分组统计,并默认按频数高低执行降序排列...;sort_values是按值排序,如果是dataframe对象,也可通过axis参数设置排序方向是行还是列,同时根据by参数传入指定的行或者列,可传入多行或多列并分别设置升序降序参数,非常灵活。...一般而言,分组的目的是为了后续的聚合统计,所有groupby函数一般不单独使用,而需要级联其他聚合函数共同完成特定需求,例如分组求和、分组求均值等。 ?

    15.1K20

    30 个小例子帮你快速掌握Pandas

    尽管我们对loc和iloc使用了不同的列表示形式,但行值没有改变。原因是我们使用数字索引标签。因此,行的标签和索引都相同。 缺失值的数量已更改: ? 7.填充缺失值 fillna函数用于填充缺失值。...第一个参数是位置的索引,第二个参数是列的名称,第三个参数是值。 19.where函数 它用于根据条件替换行或列中的值。默认替换值是NaN,但我们也可以指定要替换的值。...您可能需要更改的其他一些选项是: max_colwidth:列中显示的最大字符数 max_columns:要显示的最大列数 max_rows:要显示的最大行数 28.计算列中的百分比变化 pct_change...用于计算一系列值中的百分比变化。...在计算元素的时间序列或顺序数组中的变化百分比时很有用。 ? 从第一元素(4)到第二元素(5)的变化为%25,因此第二个值为0.25。

    10.8K10

    2022年最新Python大数据之Excel基础

    数据->删除重复项->选择删除条件 缺失值处理 三种处理缺失值的常用方法 1.填充缺失值,一般可以用平均数/中位数/众数等统计值,也可以使用算法预测。...循环引用:A单元格中的公式应用了B单元格,B单元格中的公式又引用了A •Ctrl+G唤出定位菜单,选的定位空值,找到B列的所有空值 •应用平均值数据,按住Ctrl+Enter同时填充所有缺失值位置 数据加工...1.添加的数据标签默认都是数值,某些情况下需要用百分比等其它形式展示,可以进行修改 右键图表,唤出菜单,选择设置数据标签格式。 •将空色框内的标签进行修改,将”值“改为”百分比“,则修改成功。...表中不要有空值 原始数据不要出现空行/空列。如数据缺失,或为“0”值,建议输入“0”而非空白单元格。 如下图所示,表的第一行为空白,会导致透视表字段出错,表中间有空行,会导致透视表中有空值。...表中不要有合并单元格 数据透视表的原始表格中不要有合并单元格存在,否则容易导致透视分析错误 填充合并单元格办法:取消合并单元格 ->选中要填充的空单元格 ->输入公式->按Ctrl+Enter键重复操作

    8.2K20

    Pandas tricks 之 transform的用法

    思路二: 对于上面的过程,pandas中的transform函数提供了更简洁的实现方式,如下所示: ? 可以看到,这种方法把前面的第一步和第二步合成了一步,直接得到了sum_price列。...多列分组使用transform 为演示效果,我们虚构了如下数据,id,name,cls为维度列。 ? 我们想求:以(id,name,cls)为分组,每组stu的数量占各组总stu的比例。...如果不采用groupby,直接调用,也会有问题,参见下面的第二种调用方式。 ? 第三种调用调用方式修改了函数,transform依然不能执行。...以上三种调用apply的方式处理两列的差,换成transform都会报错。 利用transform填充缺失值 transform另一个比较突出的作用是用于填充缺失值。举例如下: ?...在上面的示例数据中,按照name可以分为三组,每组都有缺失值。用平均值填充是一种处理缺失值常见的方式。此处我们可以使用transform对每一组按照组内的平均值填充缺失值。 ?

    2.1K30

    高效的10个Pandas函数,你都用过吗?

    Insert Insert用于在DataFrame的指定位置中插入新的数据列。默认情况下新列是添加到末尾的,但可以更改位置参数,将新列添加到任何位置。...Ture表示允许新的列名与已存在的列名重复 接着用前面的df: 在第三列的位置插入新列: #新列的值 new_col = np.random.randn(10) #在第三列位置插入新列,从0开始计算...我们只知道当年度的值value_1、value_2,现在求group分组下的累计值,比如A、2014之前的累计值,可以用cumsum函数来实现。...Where Where用来根据条件替换行或列中的值。如果满足条件,保持原来的值,不满足条件则替换为其他值。默认替换为NaN,也可以指定特殊值。...比如说给定三个元素[2,3,6],计算相差百分比后得到[NaN, 0.5, 1.0],从第一个元素到第二个元素增加50%,从第二个元素到第三个元素增加100%。

    4.2K20

    python数据分析——数据分类汇总与统计

    1.1按列分组 按列分组分为以下三种模式: 第一种: df.groupby(col),返回一个按列进行分组的groupby对象; 第二种: df.groupby([col1,col2]),返回一个按多列进行分组的...groupby对象; 第三种: df.groupby(col1)[col2]或者 df[col2].groupby(col1),两者含义相同,返回按列col1进行分组后col2的值; 首先生成一个表格型数据集...使用read_csv导入数据之后,我们添加了一个小费百分比的列tip_pct: 如果希望对不同的列使用不同的聚合函数,或一次应用多个函数,将通过下面的例来进行展示。...关键技术:假设你需要对不同的分组填充不同的值。可以将数据分组,并使用apply和一个能够对各数据块调用fillna的函数即可。...我们可以用分组平均值去填充NA值: 也可以在代码中预定义各组的填充值。由于分组具有一个name属性,所以我们可以拿来用一下: 四、数据透视表与交叉表 4.1.

    83910

    Python pandas十分钟教程

    df['Contour'].isnull().sum():返回'Contour'列中的空值计数 df['pH'].notnull().sum():返回“pH”列中非空值的计数 df['Depth']....unique():返回'Depth'列中的唯一值 df.columns:返回所有列的名称 选择数据 列选择:如果只想选择一列,可以使用df['Group']....df.loc[0:4,['Contour']]:选择“Contour”列的0到4行。 df.iloc[:,2]:选择第二列的所有数据。 df.iloc[3,:]:选择第三行的所有数据。...下面的代码将平方根应用于“Cond”列中的所有值。 df['Cond'].apply(np.sqrt) 数据分组 有时我们需要将数据分组来更好地观察数据间的差异。...Pandas中提供以下几种方式对数据进行分组。 下面的示例按“Contour”列对数据进行分组,并计算“Ca”列中记录的平均值,总和或计数。

    9.8K50

    Pandas_Study02

    首先,可以通过isnull 和 notnull 方法查看有哪些NaN值,这两个方法返回的布尔值,指示该值是否是NaN值,结合sum 方法可以获取每列空值的数目以及总数。...# axis 按行操作,how 原理同上 # 同时可以添加条件删除 print(df.dropna(axis = 1, thresh = 2)) # axis=1按列操作,thresh 指示这一列或行中有两个或以上的非...复杂的 使用向前 或 向后 填充数据,依旧使用fillna 方法,所谓向前 是指 取出现NaN值的前一列或前一行的数据来填充NaN值,向后同理 # 在df 的e 这一列上操作,默认下按行操作,向前填充数据...下的值为NaN concat 函数 同样的可以指定是按行操作还是按列操作。...外连接,分左外连接,右外连接,全连接,左外连接是左表上的所有行匹配右表,正常能匹配上的取B表的值,不能的取空值,右外连接同理,全连接则是取左并上右表的的所有行,没能匹配上的用空值填充。

    20510

    独家 | 手把手教数据可视化工具Tableau

    举例来说,如果前 10,000 行中大多数为文本值,那么整个列都映射为使用文本数据类型。 注意: 空单元格也可以创建混合值列,因为它们的格式不同于文本、日期或数字。...例如,有时 Tableau 会用 Null 值填充那些字段,如下表中所示: 如果在分析数据时使用基于混合值列的字段时遇到困难,则可以执行以下操作之一: 对基础数据源中的空单元格设置格式,使它们与列的数据类型相匹配...FIXED 详细级别表达式使用指定的维度计算值,而不引用视图中的维度。在本例中,您将使用它来建立各个子类的百分比 — 不会受常规维度筛选器影响的百分比。为何会这样?...您现在的视图为如下所示: 不管您使用快速筛选器选择或者不选择哪些字段,右侧图表中的百分比现在都保持一致。现在只需设置“FixedSumOfSales”值的格式,以使其显示为百分比。...现在您的视图是完整的: STEP 11: 使用视图右侧的滚动条来检查不同地区的数据。 生成填充气泡图 使用填充气泡图可以在一组圆中显示数据。维度定义各个气泡,度量定义各个圆的大小和颜色。

    18.9K71

    用 Pandas 进行数据处理系列 二

    b’].dtype某一列的格式df.isnull()是否空值df....- df.fillna(value=0) :: 用数字 0 填充空值 df[‘pr’].fillna(df[‘pr’].mean())用列 pr 的平均值对 na 进行填充df[‘city’]=df[...loc函数按标签值进行提取iloc按位置进行提取ix可以同时按标签和位置进行提取 具体的使用见下: df.loc[3]按索引提取单行的数值df.iloc[0:5]按索引提取区域行数据值df.reset_index...df.groupby(‘city’).count()按 city 列分组后进行数据汇总df.groupby(‘city’)[‘id’].count()按 city 进行分组,然后汇总 id 列的数据df.groupby...,可以使用 ['min'] ,也可以使用 numpy 中的方法,比如 numpy.min ,也可以传入一个方法,比如: def max_deviation(s): std_score = (s

    8.2K30

    Python报表自动化

    此时大部分人都会想到先在数据源表格中添加三列按分成比例分成以后的贷款金额。 ?...3.5数据分组/透视 3.5.1空值处理 此时利用info()返回的数据可以判断data4是否存在空值。...从以下运行结果来看,data4数据表格共5019行,贷款金额及贷款用途都含有5019行非空值,说明者两列都没有空值出现。而单位及分成比例只有2041行数据为非空。其他行为空值。...注意到分成比例并非百分比格式,我们需要将其转化为百分比(除以100)。插入新列可以使用insert()函数,也可以直接以索引的方式进行。为了演示,我们分别选择不同的方法插入百分比列及分成贷款金额列。...3.5.3数据透视 至此,数据清洗过程基本上已经完成了,接下来只需要对数据进行分组透视啦。这里还是遵循排除干扰的原则,先使用普通索引的方式提取需要用到的列,排除不必要的干扰。

    4.1K41

    SQL索引优缺点

    我们也可以强制SQL按学分查询,于是有下面的SQL执行计划比较,我们可以清楚的看出,强制使用学分做为索引查询比表搜索的性能要差很多。 第二种情况:学生表没有索引。这个情况没有分析的价值。...引出问题:为什么数据库对于varchar最大值设置为8000,而不是10000呢? 答:是由于数据页大小最大为8K。 第二:针对上述索引可能造成的页分页的解决方案,填充因子。...创建索引时,可以为索引指定一个填充因子,在索引的每个叶级页面上保留一定百分比的空间,将来数据可以进行扩充和减少页分裂。值从0到100的百分比数值,100 时表示将数据页填满。...不对数据进行更改时(例如只读表中)才用此设置,实用价值不大。值越小则数据页上的空闲空间越大,可以减少在索引增长过程中进行页分裂,但需要占用更多的硬盘空间。...随着业务的变化,数据的变化,会发生有些索引的用处可能发生变化,例如: 1:原来主要靠用户名搜索记录,现在业务更改为按用户所在城市搜索等等,此时我们需要即时变更表索引以适应新业务的变化,即数据和使用模式发生了大幅度变化

    1.3K10

    表格控件:计算引擎、报表、集算表

    这允许用户指定行或列的大小是否应根据其中的文本进行更改。...启用后,当隐藏单元格处于活动状态时,编辑栏将不会显示任何数据,输入编辑器在编辑模式下将为空,并且公式编辑器面板将不会显示公式。 利用这个特性,可以保护一些单元格中的公式,避免使用者看到公式或修改。...如果图表绑定到完整的表或使用表结构引用的表的某些列,则表中的任何更新都将在运行时自动更新图表的系列或数据值。 图表数据标签“单元格值” 图表数据标签现在支持使用单元格引用来显示所选单元格范围的值。...列类型如下: 列类型 数据类型 描述 数值 数值 用于大多数具有指定格式的数值 文本 文本 用于常见文本 公式 取决于结果 根据记录中的其他字段计算值 查找 取决于相关字段 查找相关记录中的特定字段 日期...数据透视表分组兼容性更新 Excel 更改了数据透视表中的分组方式,因此我们更新了 SpreadJS 数据透视表的分组策略以匹配。

    13710

    Pandas速查手册中文版

    pandas-cheat-sheet.pdf 关键缩写和包导入 在这个速查手册中,我们使用如下缩写: df:任意的Pandas DataFrame对象 同时我们需要做如下的引入: import pandas...():检查DataFrame对象中的空值,并返回一个Boolean数组 pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组 df.dropna():删除所有包含空值的行...,后按col2降序排列数据 df.groupby(col):返回一个按列col进行分组的Groupby对象 df.groupby([col1,col2]):返回一个按多列进行分组的Groupby对象 df.groupby...col1进行分组,并计算col2和col3的最大值的数据透视表 df.groupby(col1).agg(np.mean):返回按列col1分组的所有列的均值 data.apply(np.mean):对...的列执行SQL形式的join 数据统计 df.describe():查看数据值列的汇总统计 df.mean():返回所有列的均值 df.corr():返回列与列之间的相关系数 df.count():返回每一列中的非空值的个数

    12.3K92
    领券