首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

pandas | 使用pandas进行数据处理——DataFrame篇

我们创建了一个dict,它的key是列名,value是一个list,当我们将这个dict传入DataFrame的构造函数的时候,它将会以key作为列名,value作为对应的值为我们创建一个DataFrame...对于excel、csv、json等这种结构化的数据,pandas提供了专门的api,我们找到对应的api进行使用即可: ?...我们很少会出现需要用到多级列名的情况,所以一般情况下最常用的就是取默认值或者是令它等于None。 在所有这些创建DataFrame的方法当中最常用的就是最后一种,从文件读取。...既然是dict我们自然可以根据key值获取指定的Series。 DataFrame当中有两种方法获取指定的列,我们可以通过.加列名的方式或者也可以通过dict查找元素的方式来查询: ?...转成numpy数组 有时候我们使用pandas不方便,想要获取它对应的原始数据,可以直接使用.values获取DataFrame对应的numpy数组: ?

3.5K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    使用程序计算近似Π值

    使用程序计算近似Π值 一、前言 现在大多数语言,只需要调用一下Math.PI就可以知道Π值了。但是你有没有想过这个PI是怎么来的,是直接存储吗?还是计算来的。...虽然不知道具体是怎么实现的,但是我们可以使用一些简单的数学知识,来计算出近似的Π值。 二、实现原理 我们小学就学过圆的面积公式,只不过那个时候我们直接使用3.14作为Π。...那么除了上面的方法,还有什么方法可以根据R计算S呢,有一种可以参考的方法就是使用微积分的思想,即把圆拆分成无数个小矩形,不过在计算机中我们只能拆分出有限个小矩形。...最后,n个矩形相加的公式为: A = \sum_{i=1}^n\frac{\sqrt{R^2 - (\frac{i}{n}R-R)^2}}{n} 下面我们就可以根据公式用程序求出Π的近似值。...y,其中x=i/n dS = dx * y # 单个小矩形的面积 A += dS # 对矩形面积进行累加 pi = 4 * A / pow(r, 2) # 计算Π print(pi)

    1.7K20

    使用MICE进行缺失值的填充处理

    它通过将待填充的数据集中的每个缺失值视为一个待估计的参数,然后使用其他观察到的变量进行预测。对于每个缺失值,通过从生成的多个填充数据集中随机选择一个值来进行填充。...在每次迭代中,它将缺失值填充为估计的值,然后将完整的数据集用于下一次迭代,从而产生多个填充的数据集。 链式方程(Chained Equations):MICE使用链式方程的方法进行填充。...它将待填充的缺失值视为需要估计的参数,然后使用其他已知的变量作为预测变量,通过建立一系列的预测方程来进行填充。每个变量的填充都依赖于其他变量的估计值,形成一个链式的填充过程。...步骤: 初始化:首先,确定要使用的填充方法和参数,并对数据集进行初始化。 循环迭代:接下来,进行多次迭代。在每次迭代中,对每个缺失值进行填充,使用其他已知的变量来预测缺失值。...总结 虽然MICE带来了计算成本,需要考虑以非常接近真实的标签估算为代价,但是它可以有效地处理各种类型和分布的缺失数据,是处理缺失数据的重要工具之一。

    46610

    特征锦囊:怎么去除DataFrame里的缺失值?

    今日锦囊 怎么去除DataFrame里的缺失值?...这个我们经常会用,当我们发现某个变量的缺失率太高的时候,我们会直接对其进行删除操作,又或者说某一行我不想要了,想单独删除这一行数据,这个我们该怎么处理呢?...这里介绍一个方法,DataFrame.dropna(),具体可以看下图: ?...从方法介绍可以看出,我们可以指定 axis 的值,如果是0,那就是按照行去进行空值删除,如果是1则是按照列去进行操作,默认是0。...同时,还有一个参数是how ,就是选择删除的条件,如果是 any则是如果存在一个空值,则这行(列)的数据都会被删除,如果是 all的话,只有当这行(列)全部的变量值为空才会被删除,默认的话都是any 。

    1.6K10

    python dataframe筛选列表的值转为list【常用】

    筛选列表中,当b列中为’1’时,所有c的值,然后转为list 2 .筛选列表中,当a列中为'one',b列为'1'时,所有c的值,然后转为list 3 .将a列整列的值,转为list(两种) 4....筛选列表,当a=‘one’时,取整行所有值,然后转为list 具体看下面代码: import pandas as pd from pandas import DataFrame df = DataFrame...one 1 一 2 two 2 二 3 three 3 三 4 four 1 四 5 five 5 五 """ # 筛选列表中,当b列中为’1’时,所有c的值...= df.c[df['b'] == '1'].tolist() print(b_c) # out: ['一', '一', '四'] # 筛选列表中,当a列中为'one',b列为'1'时,所有c的值...a_b_c = df.c[(df['a'] == 'one') & (df['b'] == '1')].tolist() print(a_b_c) # out: ['一', '一'] # 将a列整列的值

    5.1K10

    DataFrame和Series的使用

    DataFrame和Series是Pandas最基本的两种数据结构 可以把DataFrame看作由Series对象组成的字典,其中key是列名,值是Series Series和Python...返回Series的行索引 Series的一些属性 Series常用方法 针对数值型的Series,可以进行常见计算 share = data.share share.mean() #...[:,[0,2,4,-1]] df.iloc[:,0:6:2] # 所有行, 第0 , 第2 第4列 可以通过行和列获取某几个格的元素 分组和聚合运算 先将数据分组 对每组的数据再去进行统计计算如...,求平均,求每组数据条目数(频数)等 再将每一组计算的结果合并起来 可以使用DataFrame的groupby方法完成分组/聚合计算 df.groupby(by='year')[['lifeExp','...Series的唯一值计数 # 可以使用 value_counts 方法来获取Pandas Series 的频数统计 df.groupby(‘continent’) → dataframeGroupby

    10910

    计算π的值

    圆周率π是一个无理数,没有任何一个精确公式能够计算π值,π的计算只能采用近似算法。国际公认采用蒙特卡洛方法计算。蒙特卡洛(Monte Carlo)方法,又称随机抽样或统计试验方法。...当所求解问题是某种事件出现的概率,或某随机变量期望值时,可以通过某种“试验”的方法求解。简单说,蒙特卡洛是利用随机试验求解问题的方法。 首先构造一个单位正方形 和 1/4圆。...随机点数量越大,得到的π值越精确。 ? 由于DARTS点数量较少,π的值不是很精确。通过增加DARTS数量继续试验,同时,运行时间也逐渐增加。 ? ?...代码及执行结果 以上是Python语言编写的程序,运行较慢。采用Fortran语言编写程序,会快很多,以下是抛洒不同的点,程序运行时间比较。 ?...蒙特卡洛方法提供了一个利用计算机中随机数和随机试验解决现实中无法通过公式求解问题的思路。它广泛应用在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域。

    2.1K70

    使用VBA进行线性插值

    标签:VBA 如果要在Excel工作表中针对相应数据进行线性插值计算,使用VBA如何实现? 如下图1所示,有3个值,要使用这3个值进行线性插值。 图1 结果如下图2所示。...图2 可以使用下面的VBA代码: Sub LinInterp() Dim rKnown As Range '已知数值的区域 Dim rGap As Range '插值区域 Dim dLow As...For iArea = 1 To .Areas.Count - 1 '计算放置插值数据区域的单元格数 cntGapCells = .Areas(iArea + 1).Cells...'获取最大值 dHigh = .Areas(iArea + 1).Cells(1, 1).Value '计算增加值 dIncr = (dHigh - dLow)...之所以分享这个示例,主要是其使用了SpecialCells方法来获取相应的单元格组织单元格区域,有兴趣的朋友可以好好体会。 注:本文代码收集自.vbaexpress.com,供参考。

    22710

    Python使用pandas扩展库DataFrame对象的pivot方法对数据进行透视转换

    Python扩展库pandas的DataFrame对象的pivot()方法可以对数据进行行列互换,或者进行透视转换,在有些场合下分析数据时非常方便。...DataFrame对象的pivot()方法可以接收三个参数,分别是index、columns和values,其中index用来指定转换后DataFrame对象的纵向索引,columns用来指定转换后DataFrame...对象的横向索引或者列名,values用来指定转换后DataFrame对象的值。...为防止数据行过长影响手机阅读,我把代码以及运行结果截图发上来: 创建测试用的DataFrame对象: ? 透视转换,指定index、columns和values: ?...透视转换,不指定values,但可以使用下标访问指定的values: ?

    2.5K40

    如何使用tableaux进行逻辑计算

    tableaux进行逻辑计算 下载PLTableaux解决方案的源代码 - 241.2 KB 介绍 Semantic tableaux是一个逻辑计算工具,可以作为构建自动理论演示器(automatic...如果p是假的,不管q的真值是多少,公式总是成立的(任何结论都来自一个错误的前提)。它也可以表示为¬p˅q。...你可以做的第一件事情,虽然不是强制性的,是对所有的公式进行转换,使他们只拥有not,and和or运算符。(转换)可以使用我之前提到的转换规则来完成。转换规则的存在使得转换过程更加容易一点。...用这些前提进行尝试: p→q (r˅¬p)→q 并使用这个结论: (r←p)→q 看看(如果使用)不是从前提出发得到的结论会发生什么结果。...您可以使用Closed属性测试树的分支是否关闭。这个属性在根分支中的值可以用来测试整个tableaux是否是关闭(状态)。 要测试分支是否包含公式,有两种方法:包含和否定。

    4.7K80
    领券