首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

使用来自另一个数据帧的if条件在pandas数据帧中创建一个新列

在pandas数据帧中,可以使用来自另一个数据帧的if条件来创建一个新列。具体步骤如下:

  1. 导入pandas库:
代码语言:txt
复制
import pandas as pd
  1. 创建两个数据帧df1和df2:
代码语言:txt
复制
df1 = pd.DataFrame({'A': [1, 2, 3, 4, 5],
                    'B': [10, 20, 30, 40, 50]})
df2 = pd.DataFrame({'C': [True, False, True, False, True],
                    'D': [100, 200, 300, 400, 500]})
  1. 使用if条件从df2中选择满足条件的值,并将其赋值给新列'NewColumn':
代码语言:txt
复制
df1['NewColumn'] = df2['D'].where(df2['C'], 0)

这里的if条件是df2中的列'C',如果'C'列的值为True,则选择df2中对应行的'D'列的值,否则选择0。

  1. 打印输出结果:
代码语言:txt
复制
print(df1)

输出结果如下:

代码语言:txt
复制
   A   B  NewColumn
0  1  10        100
1  2  20          0
2  3  30        300
3  4  40          0
4  5  50        500

这样就在pandas数据帧df1中创建了一个新列'NewColumn',根据来自df2的if条件选择了相应的值。如果条件满足,则选择df2中对应行的值,否则选择0。

推荐的腾讯云相关产品:腾讯云数据库TencentDB、腾讯云云服务器CVM、腾讯云人工智能AI Lab。你可以通过腾讯云官方网站获取更多关于这些产品的详细信息和介绍。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

如何在 Pandas 创建一个数据并向其附加行和

Pandas一个用于数据操作和分析Python库。它建立 numpy 库之上,提供数据有效实现。数据是一种二维数据结构。在数据数据以表格形式在行和对齐。...本教程,我们将学习如何创建一个数据,以及如何在 Pandas 向其追加行和。...ignore_index 参数用于追加行后重置数据索引。concat 方法一个参数是要与列名连接数据列表。 ignore_index 参数用于追加行后重置数据索引。...Pandas.Series 方法可用于从列表创建系列。值也可以作为列表传递,而无需使用 Series 方法。 例 1 在此示例,我们创建一个数据。...Python  Pandas 库创建一个数据以及如何向其追加行和

27130

Pandas 秘籍:1~5

本章,您将学习如何从数据中选择一个数据,该数据将作为序列返回。 使用此一维对象可以轻松显示不同方法和运算符如何工作。 许多序列方法返回另一个序列作为输出。...通常,这些将从数据集中已有的先前列创建Pandas 有几种不同方法可以向数据添加。 准备 在此秘籍,我们通过使用赋值影片数据集中创建,然后使用drop方法删除。... Pandas ,这几乎总是一个数据,序列或标量值。 准备 在此秘籍,我们计算移动数据集每一所有缺失值。...早期版本 Pandas ,可以使用另一个索引器.ix通过整数和标签位置选择数据。 尽管这在某些特定情况下很方便,但是它本质上是模棱两可,并且使许多 Pandas 使用者感到困惑。....这些布尔值通常存储序列或 NumPy ndarray,通常是通过将布尔条件应用于数据一个或多个创建

37.5K10
  • 精通 Pandas 探索性分析:1~4 全

    /img/dab57015-7753-4026-9211-ffccb1e7da5c.png)] 从前面的屏幕快照可以看出,选择多个创建另一个数据,而仅选择一个创建series对象。...我们将使用County,Metro和State创建一个序列。 然后我们将这些序列连接起来,并在数据创建称为Address。.../img/3cee634e-99f8-4ec7-8fce-0ebb53bcb71e.png)] 如您在前面的屏幕快照中所见,我们按State和Metro过滤了,并使用过滤器创建一个数据...大多数 Pandas 数据方法都返回一个数据。 但是,您可能想使用一种方法来修改原始数据本身。 这是inplace参数有用地方。...set_index方法仅在内存全新数据创建了更改,我们可以将其保存在数据

    28.2K10

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护

    Pandas 擅长处理类型如下所示: 容易处理浮点数据和非浮点数据 缺失数据(用 NaN 表示); 大小可调整性: 可以从 DataFrame 或者更高维度对象插入或者是删除; 显式数据可自动对齐...用于将一个 Series 每个值替换为另一个值,该值可能来自一个函数、也可能来自一个 dict 或 Series。...当一个数据分配给另一个数据时,如果对其中一个数据进行更改,另一个数据值也将发生更改。为了防止这类问题,可以使用 copy () 函数。...,基于 dtypes 返回数据一个子集。...如果对 pivot_table( ) excel 使用有所了解,那么就非常容易上手了。

    6.7K20

    加速数据分析,这12种高效Numpy和Pandas函数为你保驾护航

    Pandas 擅长处理类型如下所示: 容易处理浮点数据和非浮点数据 缺失数据(用 NaN 表示); 大小可调整性: 可以从 DataFrame 或者更高维度对象插入或者是删除; 显式数据可自动对齐...用于将一个 Series 每个值替换为另一个值,该值可能来自一个函数、也可能来自一个 dict 或 Series。...当一个数据分配给另一个数据时,如果对其中一个数据进行更改,另一个数据值也将发生更改。为了防止这类问题,可以使用 copy () 函数。...,基于 dtypes 返回数据一个子集。...如果对 pivot_table( ) excel 使用有所了解,那么就非常容易上手了。

    7.5K30

    12 种高效 Numpy 和 Pandas 函数为你加速分析

    Pandas 擅长处理类型如下所示: 容易处理浮点数据和非浮点数据 缺失数据(用 NaN 表示); 大小可调整性: 可以从 DataFrame 或者更高维度对象插入或者是删除; 显式数据可自动对齐...用于将一个 Series 每个值替换为另一个值,该值可能来自一个函数、也可能来自一个 dict 或 Series。...当一个数据分配给另一个数据时,如果对其中一个数据进行更改,另一个数据值也将发生更改。为了防止这类问题,可以使用 copy () 函数。...,基于 dtypes 返回数据一个子集。...如果对 pivot_table( ) excel 使用有所了解,那么就非常容易上手了。

    6.3K10

    PySpark UD(A)F 高效使用

    所以 df.filter() 示例,DataFrame 操作和过滤条件将发送到 Java SparkContext,在那里它被编译成一个整体优化查询计划。...GROUPED_MAP UDF是最灵活,因为它获得一个Pandas数据,并允许返回修改。 4.基本想法 解决方案将非常简单。...这意味着UDF中将这些转换为JSON,返回Pandas数据,并最终将Spark数据相应列从JSON转换为复杂类型 [2enpwvagkq.png] 5.实现 将实现分为三种不同功能: 1)...Spark数据转换为一个数据,其中所有具有复杂类型都被JSON字符串替换。...除了转换后数据外,它还返回一个带有列名及其转换后原始数据类型字典。 complex_dtypes_from_json使用该信息将这些精确地转换回它们原始类型。

    19.6K31

    Pandas系列 - DataFrame操作

    概览 pandas.DataFrame 创建DataFrame 列表 字典 系列(Series) 选择 添加 删除 pop/del 行选择,添加和删除 标签选择 loc 按整数位置选择 iloc...行切片 附加行 append 删除行 drop 数据(DataFrame)是二维数据结构,即数据以行和表格方式排列 数据(DataFrame)功能特点: 潜在是不同类型 大小可变 标记轴...描述 1 data 数据采取各种形式,如:ndarray,series,map,lists,dict,constant和另一个DataFrame。...这只有没有索引传递情况下才是这样。 4 dtype 每数据类型。 5 copy 如果默认值为False,则此命令(或任何它)用于复制数据。...创建DataFrame Pandas数据(DataFrame)可以使用各种输入创建 列表 字典 系列(Series) Numpy ndarrays 另一个数据(DataFrame) 列表 import

    3.9K10

    Pandas系列 - 基本数据结构

    数据(DataFrame)功能特点: 潜在是不同类型 大小可变 标记轴(行和) 可以对行和执行算术运算 构造函数: pandas.DataFrame(data, index, columns...这只有没有索引传递情况下才是这样。 4 dtype 每数据类型。 5 copy 如果默认值为False,则此命令(或任何它)用于复制数据。...创建DataFrame Pandas数据(DataFrame)可以使用各种输入创建 列表 字典 系列(Series) Numpy ndarrays 另一个数据(DataFrame) 列表 import...) major_axis axis 1,它是每个数据(DataFrame)索引(行) minor_axis axis 2,它是每个数据(DataFrame) pandas.Panel(data...,dict,constant和另一个数据(DataFrame) items axis=0 major_axis axis=1 minor_axis axis=2 dtype 每数据类型 copy

    5.2K20

    Pandas 学习手册中文第二版:1~5

    创建数据期间行对齐 选择数据特定和行 将切片应用于数据 通过位置和标签选择数据行和 标量值查找 应用于数据布尔选择 配置 Pandas 我们使用以下导入和配置语句开始本章示例...由于创建时未指定索引,因此 Pandas 创建一个基于RangeIndex标签,标签开头为 0。 数据第二,由值1至5组成。 数据列上方0是该名称。...-2e/img/00192.jpeg)] 以这种方式使用.rename()将返回一个数据,其中已重命名,并且数据是从原始数据复制。...如果需要一个带有附加数据(保持原来不变),则可以使用pd.concat()函数。 此函数创建一个数据,其中所有指定DataFrame对象均按规范顺序连接在一起。...结果数据将由两个并集组成,缺少数据填充有NaN。 以下内容通过使用与df1相同索引创建第三个数据,但只有一个名称不在df1来说明这一点。

    8.3K10

    Pandas 秘籍:6~11

    熊猫,视图不是对象,而只是对另一个对象引用,通常是数据某些子集。 此共享对象可能导致许多问题。.../img/00101.jpeg)] 追加来自不同数据 所有数据都可以向自己添加。...但是,像往常一样,每当一个数据另一个数据或序列添加一个时,索引都将在创建之前首先对齐。 准备 此秘籍使用employee数据集添加一个,其中包含该员工部门最高薪水。...merge方法提供了类似 SQL 功能,可以将两个数据结合在一起。 将行追加到数据 执行数据分析时,创建创建行更为常见。...传递给它一个值表示行标签。 步骤 2 ,names.loc[4]引用带有等于整数 4 标签行。此标签当前在数据不存在。 赋值语句使用列表提供数据创建行。

    34K10

    直观地解释和可视化每个复杂DataFrame操作

    操作数据可能很快会成为一项复杂任务,因此Pandas八种技术均提供了说明,可视化,代码和技巧来记住如何做。 ?...每种方法都将包括说明,可视化,代码以及记住它技巧。 Pivot 透视表将创建一个“透视表”,该透视表将数据现有投影为元素,包括索引,和值。...Explode Explode是一种摆脱数据列表有用方法。当一爆炸时,其中所有列表将作为行列同一索引下(为防止发生这种情况, 此后只需调用 .reset_index()即可)。...默认情况下,合并功能执行内部联接:如果每个DataFrame键名均未列另一个,则该键不包含在合并DataFrame。...“inner”:仅包含元件键是存在于两个数据键(交集)。默认合并。 记住:如果您使用过SQL,则单词“ join”应立即与按添加相联系。

    13.3K20

    NumPy 和 Pandas 数据分析实用指南:1~6 全

    /img/280c0309-eb08-4c7f-a163-d90d2c923790.png)] 我还想创建一个仅包含鸢尾花副本最后一数组,并创建另一个包含其余和全为 1 数组。...我们将一个对象传递给包含将添加到现有对象数据方法。 如果我们正在使用数据,则可以附加行或。 我们可以使用concat函数添加,并使用dict,序列或数据进行连接。...我有一个列表,在此列表,我有两个数据。 我有df,并且我有数据包含要添加。...如果使用序列来填充数据缺失信息,则序列索引应对应于数据,并且它提供用于填充该数据特定值。 让我们看一些填补缺失信息方法。...当我们想要索引上其他结构而不将该结构视为时,将使用分层索引。 创建MultiIndex一种方法是 Pandas使用MultiIndex对象初始化方法。

    5.4K30

    Python探索性数据分析,这样才容易掌握

    下面的代码显示了必要 import 语句: ? 使用 Pandas 库,你可以将数据文件加载到容器对象(称为数据, dataframe)。...当基于多个数据集之间比较数据时,标准做法是使用(.shape)属性检查每个数据行数和数。如图所示: ? 注意:左边是行数,右边是数;(行、)。...请注意:“Maine” 2018 年 ACT 数据中出现了两次。下一步是确定这些值是重复还是数据输入不正确引起。我们将使用一种脱敏技术来实现这一点,它允许我们检查满足指定条件数据行。...坏消息是存在数据类型错误,特别是每个数据“参与”都是对象类型,这意味着它被认为是一个字符串。...这可能是乏味,这给了我们另一个创建函数来节省时间好机会!我解决方案如下函数所示: ? 是时候让这些功能发挥作用了。首先让我们使用 fix_participation() 函数: ?

    5K30

    精通 Pandas:1~5

    默认行为是为未对齐序列结构生成索引并集。 这是可取,因为信息可以保留而不是丢失。 本书下一章,我们将处理 Pandas 缺失值。 数据 数据一个二维标签数组。...使用ndarrays/列表字典 在这里,我们从列表字典创建一个数据结构。 键将成为数据结构标签,列表数据将成为值。 注意如何使用np.range(n)生成行标签索引。...列表索引器用于选择多个一个数据切片只能生成另一个数据,因为它是 2D 。 因此,在后一种情况下返回一个数据。...append函数无法某些地方工作,但是会返回一个数据,并将第二个数据附加到第一个数据上。...由于并非所有都存在于两个数据,因此对于不属于交集数据每一行,来自另一个数据均为NaN。

    19.1K10

    如何在 Python 绘图图形上手动添加图例颜色和图例字体大小?

    本教程将解释如何使用 Python Plotly 图形上手动添加图例文本大小和颜色。本教程结束时,您将能够强大 Python 数据可视化包 Plotly 帮助下创建交互式图形和图表。...Plotly Express 库创建散点图,其中包含来自熊猫数据 'df' x 和 y 数据。...例 在此示例,我们通过定义包含三个键数据字典来创建自己数据:“考试 1 分数”、“考试 2 分数”和“性别”。随机整数和字符串值使用 NumPy 分配给这些键。然后我们使用了 pd。...DataFrame() 方法,用于从数据字典创建数据。 然后使用 px.scatter() 方法创建散点图。数据“考试 1 分数”和“考试 2 分数”分别用作 x 轴和 y 轴。...我们首先使用 px.data.tips() 函数首先将提示数据集加载到 Pandas 数据

    77730

    Python 数据科学入门教程:Pandas

    为了引用第零,我们执行fiddy_states[0][0]。 一个是列表索引,它返回一个数据另一个数据。...每个数据都有日期和值。这个日期在所有数据重复出现,但实际上它们应该全部共用一个,实际上几乎减半了我们数。 组合数据时,你可能会考虑相当多目标。...我认为我们最好坚持使用月度数据,但重新采样绝对值得在任何 Pandas 教程涵盖。现在,你可能想知道,为什么我们为重采样创建一个数据,而不是将其添加到现有的数据。...我们将从以下脚本开始(请注意,现在通过HPI_data数据添加一个,来完成重新采样)。...创建标签对监督式机器学习过程至关重要,因为它用于“教给”或训练机器与特征相关正确答案。 Pandas 数据映射函数到非常有用,可用于编写自定义公式,将其应用于整个数据,特定创建

    9K10

    如何成为Python数据操作库Pandas专家?

    下面我们给大家介绍PandasPython定位。 ? 01 了解Pandas 要很好地理解pandas,关键之一是要理解pandas是一系列其他python库包装器。...另一个因素是向量化操作能力,它可以对整个数据集进行操作,而不只是对一个数据集进行操作。...03 通过DTYPES高效地存储数据 当通过read_csv、read_excel或其他数据读取函数将数据加载到内存时,pandas会进行类型推断,这可能是低效。...这些api允许您明确地利用dtypes指定每个类型。指定dtypes允许在内存更有效地存储数据。...04 处理带有块大型数据pandas允许按块(chunk)加载数据数据。因此,可以将数据作为迭代器处理,并且能够处理大于可用内存数据。 ?

    3.1K31
    领券