首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

keras中的损失函数

损失函数是模型优化的目标,所以又叫目标函数、优化评分函数,在keras中,模型编译的参数loss指定了损失函数的类别,有两种指定方法: model.compile(loss='mean_squared_error...='sgd') 你可以传递一个现有的损失函数名,或者一个TensorFlow/Theano符号函数。...TensorFlow/Theano张量,其shape与y_true相同 实际的优化目标是所有数据点的输出数组的平均值。...categorical_crossentropy损失时,你的目标值应该是分类格式 (即,如果你有10个类,每个样本的目标值应该是一个10维的向量,这个向量除了表示类别的那个索引为1,其他均为0)。...为了将 整数目标值 转换为 分类目标值,你可以使用Keras实用函数to_categorical: from keras.utils.np_utils import to_categorical categorical_labels

2.1K20
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    理解交叉熵作为损失函数在神经网络中的作用

    假设最后的节点数为N,那么对于每一个样例,神经网络可以得到一个N维的数组作为输出结果,数组中每一个维度会对应一个类别。...Softmax回归处理 神经网络的原始输出不是一个概率值,实质上只是输入的数值做了复杂的加权和与非线性处理之后的一个值而已,那么如何将这个输出变为概率分布?...除此之外,交叉熵还有另一种表达形式,还是使用上面的假设条件: 其结果为: 以上的所有说明针对的都是单个样例的情况,而在实际的使用训练过程中,数据往往是组合成为一个batch来使用,所以对用的神经网络的输出应该是一个...除了tf.reduce_mean函数,tf.clip_by_value函数是为了限制输出的大小,为了避免log0为负无穷的情况,将输出的值限定在(1e-10, 1.0)之间,其实1.0的限制是没有意义的...由于在神经网络中,交叉熵常常与Sorfmax函数组合使用,所以TensorFlow对其进行了封装,即: cross_entropy = tf.nn.sorfmax_cross_entropy_with_logits

    2.7K90

    C++中的输入函数scanf使用方法详解

    一、scanf的基本用法 scanf函数是C和C++中常用的输入函数之一,可以从用户输入的标准输入流stdin中读取格式为指定类型的数据。...我们使用了scanf函数读取用户输入的整数,并通过printf输出了读取到的整数a的值。... 0; } 在上面的示例中,我们使用了scanf函数读取两个整数a和b,并通过result判断是否读取成功,如果失败,则输出“输入错误”。...例如,在下面的示例中,我们定义了一个长度为20的字符数组,但是通过scanf函数读取字符串时,没有对字符串长度进行限制,导致可能出现缓冲区溢出的问题: #include  int main...相信通过本文的学习,读者已经掌握了scanf函数的基本使用方法,并能够熟练运用scanf函数进行数据输入。

    2.6K60

    使用C++中的cin函数来读取用户的输入

    一、cin函数的概述 在C++中,cin是一个头文件iostream中的标准输入流,它用于从键盘读取输入。...然后在屏幕上输出提示信息“请输入一个整数:”,随后使用cin函数读取用户输入的整数,将其存储在变量num中,最后将读取到的整数输出到屏幕上。...可以使用cin.ignore函数实现这个功能。注意,在读取完整数类型的输入后,需要调用cin.ignore函数,将回车符从输入缓冲区中清除。...四、总结 C++中的cin函数是一个非常强大的功能,可以读取多种类型的输入,提高了程序的交互性。在使用cin函数时,需要注意用户的输入可能会出现错误,需要预留异常处理机制,保证程序的稳定性。...读取字符串类型的输入时需要注意使用getline函数。如果在读取完整数类型的输入后,想继续读取字符串类型的输入,需要先调用cin.ignore函数忽略输入缓冲区中的回车符。

    1.5K30

    Shell编程中关于数组作为参数传递给函数的若干问题解读

    结合python对于数组的切片处理来设想,arr[*] 中的*表示所有,即对数组arr进行所有元素的切片,而最后的结果其实是可以理解成将数组“剥去了外壳”,如:1 2 3 4 5 6。...3、 数组作为参数传递给函数的若干问题说明以下通过例子来说明传参数组遇到的问题以及原因:第一、关于$1 的问题[root@iZuf6gxtsgxni1r88kx9rtZ linux_cmd]# cat...,而这里由于只向函数传递了1个参数并且该参数是数组,因此在这种特定情况下也可以取传递的数组参数。...和 arg1 中使用了反引号或者$() 来将命令输出赋值给变量。...,其外层的() 的作用是无效的,至少在我的linux版本中是这样的。

    23410

    在tensorflow2.2中使用Keras自定义模型的指标度量

    使用Keras和tensorflow2.2可以无缝地为深度神经网络训练添加复杂的指标 Keras对基于DNN的机器学习进行了大量简化,并不断改进。...在训练中获得班级特定的召回、精度和f1至少对两件事有用: 我们可以看到训练是否稳定,每个类的损失在图表中显示的时候没有跳跃太多 我们可以使用一些技巧-早期停止甚至动态改变类权值。...还有一个关联predict_step,我们在这里没有使用它,但它的工作原理是一样的。 我们首先创建一个自定义度量类。...由于tensorflow 2.2,可以透明地修改每个训练步骤中的工作(例如,在一个小批量中进行的训练),而以前必须编写一个在自定义训练循环中调用的无限函数,并且必须注意用tf.功能启用自动签名。...keras.Sequential)、编译并训练一个顺序模型(处理函数和子类化API的过程非常简单,只需实现上面的函数)。

    2.5K10

    Transformers 4.37 中文文档(二十六)

    transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中...transformers中的 TensorFlow 模型和层接受两种输入格式: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中。...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中

    29510

    使用Keras上的分段模型和实施库进行道路检测

    ,将使用自定义生成器。...__(生成的批处理用于送入网络) 使用自定义生成器的一个主要优点是,可以使用拥有的每种格式数据,并且可以执行任何操作 - 只是不要忘记为keras生成所需的输出(批处理)。...通常,不能将所有图像存储在RAM中,因此每次生成新的一批数据时,都应该读取相应的图像。下面定义训练方法。为此创建一个空的numpy数组(np.empty),它将存储图像和掩码。...有很多用于此类任务的库:imaging,augmentor,solt,keras / pytorch的内置方法,或者可以使用OpenCV库编写自定义扩充。但我强烈推荐albumentations库。...此外将IOU(交叉联合)设置为将监控的度量和bce_jaccard_loss(二进制交叉熵加jaccard损失)作为将优化的损失。

    1.8K20

    Transformers 4.37 中文文档(三十)

    transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中...数组或tf.Tensor)- 词汇表中输入序列标记的索引。...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中

    59610

    Transformers 4.37 中文文档(五十六)

    transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典的第一个位置参数。...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中

    13310

    Transformers 4.37 中文文档(四十五)

    ,作为掩码语言建模损失和下一个序列预测(分类)损失的总和。...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中

    29210

    Transformers 4.37 中文文档(三十三)4-37-中文文档-三十三-

    但是,如果您想在 Keras 方法之外使用第二种格式,例如在使用 Keras Functional API 创建自己的层或模型时,有三种可能性可以用来收集第一个位置参数中的所有输入张量: 一个仅包含...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(如 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中。...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型), 将所有输入作为列表、元组或字典放在第一个位置参数中。...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或者 将所有输入作为列表、元组或字典放在第一个位置参数中

    28910

    Transformers 4.37 中文文档(二十)

    我们还使用了一个自监督损失,重点放在建模句子间的一致性上,并且展示它在具有多句输入的下游任务中始终有所帮助。...loss(可选,当提供labels时返回,形状为(1,)的torch.FloatTensor)— 总损失,作为掩码语言建模损失和下一个序列预测(分类)损失的总和。...将所有输入作为列表、元组或字典放在第一个位置参数中。 支持第二种格式的原因是 Keras 方法在将输入传递给模型和层时更喜欢这种格式。...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中...transformers中的 TensorFlow 模型和层接受两种格式的输入: 将所有输入作为关键字参数(类似于 PyTorch 模型),或 将所有输入作为列表、元组或字典放在第一个位置参数中

    36010
    领券