人工智能和机器学习算法的最新发展为网络自动化提供了动力。最近,移动网络运营商(MNO)正在使用以人工智能为基础的模块,通过在其租用/自有区域内授权的数据进行网络分发来实现网络自动化。
在 /cmd/k8sailor/global/config.go 中声明 KubeClient
DaaS 数据即服务是一种服务模式,即将数据以服务的形式,向客户提供价值,参与到客户的业务中,它也是软件即服务的一种细分领域。同时DaaS 拥有云计算的通用特点,包括以租代买,按需付费、按用付费。
JavaEE平台提供了一个基于组件的方法来加快设计、开发、装配及部署企业应用程序。
最近在学习三层结构,通过上网找各种资料,初步学习了一些三层的知识跟大家分享一下。先跟大家介绍一下三层的来源,为什么叫三层?
近日,腾讯云存储解决方案总监温涛受邀在2024数据基础设施技术峰会-“智算中心技术创新论坛”分享了腾讯云的数据智能生态创新之路,剖析腾讯云数据湖在赋能AIGC多模态大模型方面的应用实践。
不知道从什么时候起,我爱上了写博客,对之前学得的只是进行反思。写了几天课程设计,代码量量8、9千左右。 然后下面文字是我在博客上复制过来的,说得很详细
前言 开始工作了,但是一进来公司本来是做爬虫和数据分析的,但是走了一个后端的,导致我必须要去顶替他的工作。因为这个项目使用的是Spring、 SpringMVC、Hibernate所以我又要去回忆一下了。毕竟很久都没有用了。 首先我们来谈一谈软件的架构吧。 一、软件应用分层架构 1.1、标准三层架构 1)数据访问层 主要是对原始数据(数据库或者文本文件等存放数据的形式)的操作层,而不是指原始数据,也就是说,是对数据的操作,而不是 数据库,具体为业务逻辑层或表示层提供数据服务.
DataOps(数据操作)源于敏捷哲学。它严重依赖自动化,注重提高计算机处理的速度和准确性,包括分析、数据访问、集成和质量控制。DataOps开始时是作为一个最佳实践系统,但逐渐成熟为处理数据分析的全功能方法。此外,它依赖并促进分析团队和信息技术运营团队之间的良好沟通。
Ceph客户端的异步IO机制使用了多个线程来执行IO操作并提高存储性能。下面是它的工作流程和如何提高性能的几个方面:
数仓架构在未来一段时间内会逐渐消亡,会被一种新的Lakehouse架构取代,该架构主要有如下特性
数据保留时间对探索会有影响,探索里能选择的最大时间范围就是你设置的保留时间,如果你没有设置,GA4里的数据保留默认是2个月,探索里最多可以对最近两个月的数据做分析,所以,一定要将数据保留事件设置为最长时间。
生成式 AI 的快速兴起让更多人能够释放数据的力量,获得新的见解并做出更好的决策,但授予更广泛的数据访问权限需要制定数据治理策略。能够平衡这些看似对立的趋势(实现数据民主化,同时对数据保持强有力的治理)的企业将通过释放独特的数据驱动见解在市场中脱颖而出。
1、根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有三个神奇的要素,这三个要素构成了数据分析最好的指标:最近一次消费(Recency)、消费频率(Frequency)、消费金额(Monetary)。 2、RFM模型:R(Recency)表示客户最近一次购买的时间有多远,F(Frequency)表示客户在最近一段时间内购买的次数,M (Monetary)表示客户在最近一段时间内购买的金额。一般原始数据为3个字段:客户ID、购买时间(日期格式)、购买金额,用数据挖掘软件处理,加权
最近一段时间,我在Google Analytics(以下简称GA)中查看网站数据时,发现一个非常可疑的信息:
在经典的机器学习范式中,为一项新任务从头训练高性能的模型需要大量的高质量数据、专家经验和计算资源,无疑耗时耗力且成本高昂。此外,复用已有的模型也存在很多问题,比如很难将训练好的特定模型适应不同的环境、逐步改进训练好的模型过程中可能出现灾难性遗忘。
人工智能在大型语言模型(LLM)如ChatGPT等方面对数据隐私带来了挑战,凸显了健全的安全措施的需求。
关注「前端向后」微信公众号,你将收获一系列「用心原创」的高质量技术文章,主题包括但不限于前端、Node.js以及服务端技术
三层架构(3-tier architecture) 通常意义上的三层架构就是将整个业务应用划分为:表现层(UI)、业务逻辑层(BLL)、数据访问层(DAL)。区分层次的目的即为了“高内聚,低耦合”的思想。
虽然许多企业渴望成为数据驱动型组织,但其中很大一部分往往只关注技术方面,主要将其视为技术资产。因此,他们的投资和举措通常围绕以技术驱动的努力。然而必须认识到技术是达到目的的手段。
背景知识:社交网络分析、数据挖掘、IBM SPSS Modeler 社交网络分析是人、组织、计算机或者其他信息或知识处理实体之间的关系和流动信息的映射和测量。图 1 是社交网络的一个示意图,其中的节点表示人、组织、计算机或者其他信息或知识处理实体;连线表示节点之间的关系或信息流动。信息流动的方式有很多,比如邮件,电话,短信,博客,等等。假设 A 经常与 B 和 C 通电话,通过分析 A 的电话 ID 记录,可以构筑出图 1 中的简单社交网络。从此图中我们可以看出 A, B, C, 三人 中,A 具有较强的
社交网络分析是人、组织、计算机或者其他信息或知识处理实体之间的关系和流动信息的映射和测量。图 1 是社交网络的一个示意图,其中的节点表示人、组织、计算机或者其他信息或知识处理实体;连线表示节点之间的关系或信息流动。信息流动的方式有很多,比如邮件,电话,短信,博客,等等。假设 A 经常与 B 和 C 通电话,通过分析 A 的电话 ID 记录,可以构筑出图 1 中的简单社交网络。从此图中我们可以看出 A, B, C, 三人 中,A 具有较强的影响力。如果 A 获得了正面或者负面的消息,这消息会很快传递给 B 和 C。而 B 与 C 之间的影响力是间接的,只能通过 A 来传播。
Kong Gateway 3.7 版本已经重磅上线,我们给 AI Gateway 带来了一系列升级,下面是 AI Gateway 的更新亮点一览。
来源|Slideshare 作者|Jen Underwood(微软高级程序经理) 翻译|王翕然 校对|康欣 编辑|Ivy 实时看板开发最佳实践 其他贡献者 本文有6个部分:现实中的实时
Mountainous time series. Paul Gilmore on Unsplash
数据湖是非结构化和结构化数据池,按原样存储,没有特定的目的,可以建立在多种技术上,如Hadoop,NoSQL,Amazon Simple Storage Service,关系数据库或各种组合根据一份名为“什么是数据湖”的白皮书,为什么它变得流行? Data Lake允许多点采集和多个数据访问点。 Pentaho公司的创始人詹姆斯·迪克森(James Dixon)在2010年创造了“数据湖”(Data Lake)这个术语,并将其与数据集市(Data Mart) “如果你把数据集市视为瓶装水的存储 - 清洁
导读:HDFS(Hadoop Distributed File System)是一种分布式文件系统,可运行在廉价的硬件上,能够处理超大文件以及提供流式数据操作。HDFS具有易扩展、高度容错、高吞吐量、高可靠性等特征,是处理大型数据集的强有力的工具。
本文是学习零信任数据动态授权桔皮书. 下载地址 http://github5.com/view/55013而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们
大数据安全保护思考 随着大数据时代的来临,企业数据开始激增,各种数据在云端、移动设备、关系型数据库、大数据库平台、pc端、采集器端等多个位置分散。对数据安全来说,挑战也更大了。在大型互联网企业里,传统方法已经很难绘制出一张敏感数据流转图了。因此在新的形势下,一是在工具层面要有新的手段支撑,包括完整的敏感数据视图、高风险场景识别、数据违规/滥用预警、数据安全事件的发现检测和阻止等。二是目前企业也存在着合规的问题了,以往合规对于互联网来说没那么重要,但随着网安法的出台,数据安全也摆上了日程。另外对于跨境企业来说
Scrapy是一个用Python编写的快速,开放源代码的Web爬网框架,用于在基于XPath的选择器的帮助下从网页中提取数据
一.DNS隧道准备 和我哥们在看一个站点的时候,发现是不出网的,但是站点可以做DNS查询,所以想着搭建一个DNS隧道。 此篇文章为了读者看起来更加清楚,我的公网服务器与域名都是未打码的,希望各位大佬手下留情。 1.DNS隧道介绍 DNS隧道,是隧道技术中的一种。当我们的HTTP、HTTPS这样的上层协议、正反向端口转发都失败的时候,可以尝试使用DNS隧道。DNS隧道很难防范,因为平时的业务也好,使用也罢,难免会用到DNS协议进行解析,所以防火墙大多对DNS的流量是放行状态。这时候,如果我们在不出网机
我们的开发架构一般都是基于两种形式,一种是 C/S 架构,也就是客户端/服务器,另一种是 B/S 架构,也就是浏览器服务器。在 JavaEE 开发中,几乎全都是基于 B/S 架构的开发。那么在 B/S 架构中,系统标准的三层架构包括:表现层、业务层、持久层。三层架构在我们的实际开发中使用的非常多,所以我们课程中的案例也都是基于三层架构设计的。
近期,巨杉数据库的技术总监郝大为受邀在第七届数据技术嘉年华中做了“银行PB级别海量非结构化数据管理实践”为主题的演讲,分享了巨杉数据库有关金融行业数据库管理以及金融级数据库技术与应用的一些实践及思考。
本文包括七个小节:1、什么是数据湖;2、数据湖的基本特征;3、数据湖基本架构;4、各厂商的数据湖解决方案;5、典型的数据湖应用场景;6、数据湖建设的基本过程;7、总结。受限于个人水平,谬误在所难免,欢迎同学们一起探讨,批评指正,不吝赐教。
是介于数据访问者和数据源之间的高速存储,当数据需要多次读取的时候用于加快读取速度。
OPPO是一家智能终端制造公司,有着数亿的终端用户,每天产生了大量文本、图片、音视频等非结构化数据。在保障数据连通性、实时性以及数据安全治理要求的前提下,如何低成本、高效率地充分挖掘数据价值,成为了拥有海量数据的公司的一大难题。目前业界的流行解决方案是数据湖,本文介绍的OPPO自研的数据湖存储CBFS在很大程度上可解决目前的痛点。
多年来,工程和技术迅速转型,生成和处理了大量需要保护的数据,因为网络攻击和违规的风险很高。为了保护企业数据,组织必须采取主动的数据安全方法,了解保护数据的最佳实践,并使用必要的工具和平台来实现数据安全。
10年前,Pentaho公司创始人兼CTO詹姆斯·迪克逊(James Dixon)在他的博客中第一次提出“数据湖”(Data Lake)的概念;10年后的今天,在业界“数据中台”大火的时代背景下,再来讨论“数据湖”,别有一番风味。
Java 是一种由 Sun Microsystems 于 1995 年首次发布的编程语言和计算平台。Java 是一种通用的、基于类的、面向对象的编程语言,旨在减少实现依赖性。它是一个应用程序开发的计算平台。Java 快速、安全、可靠,因此在笔记本电脑、数据中心、游戏机、科学超级计算机、手机等领域广泛应用。
大数据架构设计用来处理对传统数据库系统而言太大或太复杂的数据的引入、处理和分析。组织进入大数据领域的门槛各不相同,具体取决于用户的权限及其工具的功能。对某些组织来说,大数据可能意味着数百个 GB 的数据,而对另一些组织来说,大数据则意味着数百个 TB 的数据。随着处理大数据集的工具的发展,大数据的涵义也在不断地变化。慢慢地,这个术语更多的是指通过高级分析从数据集获取的价值,而不是严格地指数据的大小,虽然这种情况下的数据往往是很大的。
问题导读 1.kafka sql与数据库sql有哪些区别? 2.KSQL有什么作用? 3.KSQL流和表分别什么情况下使用?
MVC模式(Model-View-Controller)是软件工程中的一种软件架构模式,把软件系统分为三个基本部分:模型(Model)、视图(View)和控制器(Controller)。
英文原文:http://msdn.microsoft.com/zh-cn/library/cc511588(en-us).aspx Enterprise Library 缓存应用程序块允许开发人员在应用程序中合并一个局部缓存,它支持内存内的缓存,和可选的可以是数据库存储或独立存储的后端存储。应用程序块可以不做修改的使用,它提供所有必须的获取、添加和移除缓存数据的功能。可配置的到期和清除策略也是应用程序块的一部分。 在构建企业范围发布的应用程序时,架构和开发人员都要面对许多挑战,缓存可以帮助他们战胜其中的包
Google Analytics 无处不在,对于大多数营销功能的统计报告至关重要。作为加入 ClickHouse 之前没有营销分析经验并发现自己定期以博客形式贡献内容的人,我长期以来一直认为 Google Analytics (GA4) 提供了一种快速、无缝的方式来衡量网站。因此,当我们负责报告我们内容策略的成功情况并确保我们制作的内容与您(我们的用户)相关时,GA4 似乎是一个明显的起点。
【导读】本文利用TensorFlow构建了一个用于产品推荐的WALS协同过滤模型。作者从抓取数据开始对模型进行了详细的解读,并且分析了几种推荐中可能隐藏的情况及解决方案。 作者 | Lak Laksh
领取专属 10元无门槛券
手把手带您无忧上云